Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Front Immunol ; 15: 1315283, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510235

RESUMEN

Background: In adoptive T cell therapy, the long term therapeutic benefits in patients treated with engineered tumor specific T cells are limited by the lack of long term persistence of the infused cellular products and by the immunosuppressive mechanisms active in the tumor microenvironment. Exhausted T cells infiltrating the tumor are characterized by loss of effector functions triggered by multiple inhibitory receptors (IRs). In patients, IR blockade reverts T cell exhaustion but has low selectivity, potentially unleashing autoreactive clones and resulting in clinical autoimmune side effects. Furthermore, loss of long term protective immunity in cell therapy has been ascribed to the effector memory phenotype of the infused cells. Methods: We simultaneously redirected T cell specificity towards the NY-ESO-1 antigen via TCR gene editing (TCRED) and permanently disrupted LAG3, TIM-3 or 2B4 genes (IRKO) via CRISPR/Cas9 in a protocol to expand early differentiated long-living memory stem T cells. The effector functions of the TCRED-IRKO and IR competent (TCRED-IRCOMP) cells were tested in short-term co-culture assays and under a chronic stimulation setting in vitro. Finally, the therapeutic efficacy of the developed cellular products were evaluated in multiple myeloma xenograft models. Results: We show that upon chronic stimulation, TCRED-IRKO cells are superior to TCRED-IRCOMP cells in resisting functional exhaustion through different mechanisms and efficiently eliminate cancer cells upon tumor re-challenge in vivo. Our data indicate that TIM-3 and 2B4-disruption preserve T-cell degranulation capacity, while LAG-3 disruption prevents the upregulation of additional inhibitory receptors in T cells. Conclusion: These results highlight that TIM-3, LAG-3, and 2B4 disruptions increase the therapeutic benefit of tumor specific cellular products and suggest distinct, non-redundant roles for IRs in anti-tumor responses.


Asunto(s)
Linfocitos T CD8-positivos , Mieloma Múltiple , Humanos , Receptor 2 Celular del Virus de la Hepatitis A/genética , Antígenos de Neoplasias/genética , Receptores de Antígenos de Linfocitos T/genética , Microambiente Tumoral
2.
iScience ; 27(3): 109032, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38380252

RESUMEN

Obesity is characterized by the accumulation of T cells in insulin-sensitive tissues, including the visceral adipose tissue (VAT), that can interfere with the insulin signaling pathway eventually leading to insulin resistance (IR) and type 2 diabetes. Here, we found that PD-1+CD4 conventional T (Tconv) cells, endowed with a transcriptomic and functional profile of partially dysfunctional cells, are diminished in VAT of obese patients with dysglycemia (OB-Dys), without a concomitant increase in apoptosis. These cells showed enhanced capacity to recirculate into the bloodstream and had a non-restricted TCRß repertoire divergent from that of normoglycemic obese and lean individuals. PD-1+CD4 Tconv were reduced in the circulation of OB-Dys, exhibited an altered migration potential, and were detected in the liver of patients with non-alcoholic steatohepatitis. The findings suggest a potential role for partially dysfunctional PD-1+CD4 Tconv cells as inter-organ mediators of IR in obese patients with dysglycemic.

4.
Methods Mol Biol ; 2748: 13-28, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38070104

RESUMEN

A cardinal principle of oncoimmunology is that cancer cells can be eliminated by tumor-infiltrating cytotoxic CD8 T lymphocytes. This has been widely demonstrated during the last 20 years and also recently harnessed for therapy. However, emerging evidence indicates that even neoplasms showing striking initial responses to conventional and targeted (immuno)therapies often acquire resistance, resulting in tumor relapse, increased aggressiveness, and metastatization. Indeed, tumors are complex ecosystems whose malignant and nonmalignant cells, constituting the tumor microenvironment, constantly interact and evolve in space and time. Together with patient's own genetic factors, such environmental interplays may curtail antitumor immune responses leading to cancer immune evasion and natural/acquired (immuno)therapy resistance. In this context, cancer stem cells (CSCs) are thought to be the roots of therapy failure. Flow cytometry is a powerful technology that finds extensive applications in cancer biology. It offers several unique advantages as it allows the rapid, quantitative, and multiparametric analysis of cell populations or functions at the single-cell level. In this chapter, we discuss a two-color flow cytometric protocol to evaluate cancer cell immunogenicity by analyzing the proliferative and tumor-killing potential of ovalbumin (OVA)-specific CD8 OT-1 T cells exposed to OVA-expressing MCA205 sarcoma cells and their CSC counterparts.


Asunto(s)
Ecosistema , Recurrencia Local de Neoplasia , Humanos , Animales , Ratones , Citometría de Flujo , Linfocitos T Citotóxicos , Linfocitos T CD8-positivos , Antígenos , Ovalbúmina , Ratones Endogámicos C57BL , Microambiente Tumoral
5.
Sci Adv ; 9(48): eadg8014, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38039364

RESUMEN

To study and then harness the tumor-specific T cell dynamics after allogeneic hematopoietic stem cell transplant, we typed the frequency, phenotype, and function of lymphocytes directed against tumor-associated antigens (TAAs) in 39 consecutive transplanted patients, for 1 year after transplant. We showed that TAA-specific T cells circulated in 90% of patients but display a limited effector function associated to an exhaustion phenotype, particularly in the subgroup of patients deemed to relapse, where exhausted stem cell memory T cells accumulated. Accordingly, cancer-specific cytolytic functions were relevant only when the TAA-specific T cell receptors (TCRs) were transferred into healthy, genome-edited T cells. We then exploited trogocytosis and ligandome-on-chip technology to unveil the specificities of tumor-specific TCRs retrieved from the exhausted T cell pool. Overall, we showed that harnessing circulating TAA-specific and exhausted T cells allow to isolate TCRs against TAAs and previously not described acute myeloid leukemia antigens, potentially relevant for T cell-based cancer immunotherapy.


Asunto(s)
Leucemia Mieloide Aguda , Agotamiento de Células T , Humanos , Trogocitosis , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T , Antígenos de Neoplasias , Leucemia Mieloide Aguda/terapia
6.
Front Immunol ; 14: 1212444, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868997

RESUMEN

Introduction: Despite predicted efficacy, immunotherapy in epithelial ovarian cancer (EOC) has limited clinical benefit and the prognosis of patients remains poor. There is thus a strong need for better identifying local immune dynamics and immune-suppressive pathways limiting T-cell mediated anti-tumor immunity. Methods: In this observational study we analyzed by immunohistochemistry, gene expression profiling and flow cytometry the antigenic landscape and immune composition of 48 EOC specimens, with a focus on tumor-infiltrating lymphocytes (TILs). Results: Activated T cells showing features of partial exhaustion with a CD137+CD39+PD-1+TIM-3+CD45RA-CD62L-CD95+ surface profile were exclusively present in EOC specimens but not in corresponding peripheral blood or ascitic fluid, indicating that the tumor microenvironment might sustain this peculiar phenotype. Interestingly, while neoplastic cells expressed several tumor-associated antigens possibly able to stimulate tumor-specific TILs, macrophages provided both co-stimulatory and inhibitory signals and were more abundant in TILs-enriched specimens harboring the CD137+CD39+PD-1+TIM-3+CD45RA-CD62L-CD95+ signature. Conclusion: These data demonstrate that EOC is enriched in CD137+CD39+PD-1+TIM-3+CD45RA-CD62L-CD95+ T lymphocytes, a phenotype possibly modulated by antigen recognition on neoplastic cells and by a combination of inhibitory and co-stimulatory signals largely provided by infiltrating myeloid cells. Furthermore, we have identified immunosuppressive pathways potentially hampering local immunity which might be targeted by immunotherapeutic approaches.


Asunto(s)
Neoplasias Ováricas , Linfocitos T , Humanos , Femenino , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Carcinoma Epitelial de Ovario/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Células Mieloides/metabolismo , Microambiente Tumoral
7.
EBioMedicine ; 97: 104819, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37776595

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis and it is characterized by predominant pro-tumor Th2-type inflammation. T follicular helper (Tfh) cells are relevant immunoregulators in cancer, and often correlate with better survival. How the Th2-skewed microenvironment in PDAC modulates the differentiation of Tfh cells and their immunoregulatory function is unknown. METHODS: We carried out high-dimensional flow cytometry and T-cell receptor- and RNA-sequencing, as well as bioinformatics, immunohistochemistry and in vitro mechanistic studies. FINDINGS: We identified Tfh1-, Tfh2-, and Tfh17-like cell clusters in the blood, tumors and tumor-draining lymph-nodes (TDLNs) of chemo-naïve PDAC patients and showed that high percentages of Tfh2 cells within the tumor tissue and TDLNs correlated with reduced patient survival. Moreover, only Tfh2 cells were highly activated and were reduced in frequency in patients who responded to neoadjuvant chemotherapy. RNA-sequencing analysis of immunoglobulin expression showed that tumor and TDLN samples expressed all immunoglobulin (IGH) isotypes apart from IGHE. Consistent with these findings, Tfh2 cells differentiated in vitro by tumor microenvironment-conditioned dendritic cells promoted the production of anti-inflammatory IgG4 antibodies by co-cultured B cells, dependent on IL-13. Moreover, unexpectedly, Tfh2 cells inhibited the secretion of pro-inflammatory IgE, dependent on prostaglandin E2. INTERPRETATION: Our results indicate that in PDAC, highly activated pro-tumor Tfh2 favor anti-inflammatory IgG4 production, while inhibit pro-inflammatory IgE. Thus, targeting the circuits that drive Tfh2 cells, in combination with chemotherapy, may re-establish beneficial anti-tumor Tfh-B cell interactions and facilitate more effective treatment. FUNDING: Research grants from the Italian Association for Cancer Research (AIRC) IG-19119 to MPP and the AIRC Special Program in Metastatic disease: the key unmet need in oncology, 5 per Mille no. 22737 to CB, MF, CD, MR and MPP; the ERA-NET EuroNanoMed III (a collaborative european grant financed by the Italian Ministry of Health, Italy) project PANIPAC (JTC2018/041) to MPP; the Fondazione Valsecchi to SC.


Asunto(s)
Inmunoglobulina G , Neoplasias Pancreáticas , Humanos , Dinoprostona , Inmunoglobulina E , Antiinflamatorios , ARN , Microambiente Tumoral
8.
Gut ; 72(10): 1887-1903, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37399271

RESUMEN

OBJECTIVE: Colorectal tumours are often densely infiltrated by immune cells that have a role in surveillance and modulation of tumour progression but are burdened by immunosuppressive signals, which might vary from primary to metastatic stages. Here, we deployed a multidimensional approach to unravel the T-cell functional landscape in primary colorectal cancers (CRC) and liver metastases, and genome editing tools to develop CRC-specific engineered T cells. DESIGN: We paired high-dimensional flow cytometry, RNA sequencing and immunohistochemistry to describe the functional phenotype of T cells from healthy and neoplastic tissue of patients with primary and metastatic CRC and we applied lentiviral vectors (LV) and CRISPR/Cas9 genome editing technologies to develop CRC-specific cellular products. RESULTS: We found that T cells are mainly localised at the front edge and that tumor-infiltrating T cells co-express multiple inhibitory receptors, which largely differ from primary to metastatic sites. Our data highlighted CD39 as the major driver of exhaustion in both primary and metastatic colorectal tumours. We thus simultaneously redirected T-cell specificity employing a novel T-cell receptor targeting HER-2 and disrupted the endogenous TCR genes (TCR editing (TCRED)) and the CD39 encoding gene (ENTPD1), thus generating TCREDENTPD1KOHER-2-redirected lymphocytes. We showed that the absence of CD39 confers to HER-2-specific T cells a functional advantage in eliminating HER-2+ patient-derived organoids in vitro and in vivo. CONCLUSION: HER-2-specific CD39 disrupted engineered T cells are promising advanced medicinal products for primary and metastatic CRC.


Asunto(s)
Antígenos CD , Apirasa , Neoplasias Colorrectales , Neoplasias Hepáticas , Linfocitos T , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/terapia , Receptores de Antígenos de Linfocitos T , Apirasa/genética , Antígenos CD/genética , Ingeniería Celular
9.
Haematologica ; 108(6): 1530-1543, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36200418

RESUMEN

After allogeneic hematopoietic stem cell transplantation (HSCT), the emergence of circulating cytomegalovirus (CMV)- specific T cells correlates with protection from CMV reactivation, an important risk factor for non-relapse mortality. However, functional assays measuring CMV-specific cells are time-consuming and often inaccurate at early time-points. We report the results of a prospective single-center, non-interventional study that identified the enumeration of Dextramerpositive CMV-specific lymphocytes as a reliable and early predictor of viral reactivation. We longitudinally monitored 75 consecutive patients for 1 year after allogeneic HSCT (n=630 samples). The presence of ≥0.5 CMV-specific CD8+ cells/mL at day +45 was an independent protective factor from subsequent clinically relevant reactivation in univariate (P<0.01) and multivariate (P<0.05) analyses. Dextramer quantification correlated with functional assays measuring interferon-γ production, and allowed earlier identification of high-risk patients. In mismatched transplants, the comparative analysis of lymphocytes restricted by shared, donor- and host-specific HLA revealed the dominant role of thymic-independent CMV-specific reconstitution. Shared and donor-restricted CMV-specific T cells reconstituted with similar kinetics in recipients of CMV-seropositive donors, while donor-restricted T-cell reconstitution from CMV-seronegative grafts was impaired, indicating that in primary immunological responses the emergence of viral-specific T cells is largely sustained by antigen encounter on host infected cells rather than by cross-priming/presentation by non-infected donor-derived antigen-presenting cells. Multiparametric flow cytometry and high-dimensional analysis showed that shared-restricted CMV-specific lymphocytes display a more differentiated phenotype and increased persistence than donor-restricted counterparts. In this study, monitoring CMV-specific cells by Dextramer assay after allogeneic HSCT shed light on mechanisms of immune reconstitution and enabled risk stratification of patients, which could improve the clinical management of post-transplant CMV reactivations.


Asunto(s)
Infecciones por Citomegalovirus , Trasplante de Células Madre Hematopoyéticas , Humanos , Citomegalovirus/fisiología , Linfocitos T , Infecciones por Citomegalovirus/etiología , Estudios Prospectivos , Trasplante Homólogo , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/métodos , Antígenos HLA , Linfocitos T CD8-positivos
10.
Nat Immunol ; 23(9): 1379-1392, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36002648

RESUMEN

Cancer stem cells (CSCs) are a subpopulation of cancer cells endowed with high tumorigenic, chemoresistant and metastatic potential. Nongenetic mechanisms of acquired resistance are increasingly being discovered, but molecular insights into the evolutionary process of CSCs are limited. Here, we show that type I interferons (IFNs-I) function as molecular hubs of resistance during immunogenic chemotherapy, triggering the epigenetic regulator demethylase 1B (KDM1B) to promote an adaptive, yet reversible, transcriptional rewiring of cancer cells towards stemness and immune escape. Accordingly, KDM1B inhibition prevents the appearance of IFN-I-induced CSCs, both in vitro and in vivo. Notably, IFN-I-induced CSCs are heterogeneous in terms of multidrug resistance, plasticity, invasiveness and immunogenicity. Moreover, in breast cancer (BC) patients receiving anthracycline-based chemotherapy, KDM1B positively correlated with CSC signatures. Our study identifies an IFN-I → KDM1B axis as a potent engine of cancer cell reprogramming, supporting KDM1B targeting as an attractive adjunctive to immunogenic drugs to prevent CSC expansion and increase the long-term benefit of therapy.


Asunto(s)
Neoplasias de la Mama , Epigénesis Genética , Histona Demetilasas , Interferón Tipo I , Antraciclinas/metabolismo , Antraciclinas/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Histona Demetilasas/metabolismo , Humanos , Interferón Tipo I/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología
11.
Front Oncol ; 12: 912639, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847919

RESUMEN

A growing body of evidence supports the notion that the gut microbiome plays an important role in cancer immunity. However, the underpinning mechanisms remain to be fully elucidated. One attractive hypothesis envisages that among the T cells elicited by the plethora of microbiome proteins a few exist that incidentally recognize neo-epitopes arising from cancer mutations ("molecular mimicry (MM)" hypothesis). To support MM, the human probiotic Escherichia coli Nissle was engineered with the SIINFEKL epitope (OVA-E.coli Nissle) and orally administered to C57BL/6 mice. The treatment with OVA-E.coli Nissle, but not with wild type E. coli Nissle, induced OVA-specific CD8+ T cells and inhibited the growth of tumors in mice challenged with B16F10 melanoma cells expressing OVA. The microbiome shotgun sequencing and the sequencing of TCRs from T cells recovered from both lamina propria and tumors provide evidence that the main mechanism of tumor inhibition is mediated by the elicitation at the intestinal site of cross-reacting T cells, which subsequently reach the tumor environment. Importantly, the administration of Outer Membrane Vesicles (OMVs) from engineered E. coli Nissle, as well as from E. coli BL21(DE3)ΔompA, carrying cancer-specific T cell epitopes also elicited epitope-specific T cells in the intestine and inhibited tumor growth. Overall, our data strengthen the important role of MM in tumor immunity and assign a novel function of OMVs in host-pathogen interaction. Moreover, our results pave the way to the exploitation of probiotics and OMVs engineered with tumor specific-antigens as personalized mucosal cancer vaccines.

12.
Mol Ther Methods Clin Dev ; 25: 508-519, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35615710

RESUMEN

Insulin is the primary autoantigen (Ag) targeted by T cells in type 1 diabetes (T1D). Although biomarkers precisely identifying subjects at high risk of T1D are available, successful prophylaxis is still an unmet need. Leaky central tolerance to insulin may be partially ascribed to the instability of the MHC-InsB9-23 complex, which lowers TCR avidity, thus resulting in defective negative selection of autoreactive clones and inadequate insulin-specific T regulatory cell (Treg) induction. We developed a lentiviral vector (LV)-based strategy to engineer thymic epithelial cells (TECs) to correct diabetogenic T cell repertoire. Intrathymic (it) LV injection established stable transgene expression in EpCAM+ TECs, by virtue of transduction of TEC precursors. it-LV-driven presentation of the immunodominant portion of ovalbumin allowed persistent and complete negative selection of responsive T cells in OT-II chimeric mice. We successfully applied this strategy to correct the diabetogenic repertoire of young non-obese diabetic mice, imposing the presentation by TECs of the stronger agonist InsulinB9-23R22E and partially depleting the existing T cell compartment. We further circumscribed LV-driven presentation of InsulinB9-23R22E by micro-RNA regulation to CD45- TECs without loss of efficacy in protection from diabetes, associated with expanded insulin-specific Tregs. Overall, our gene transfer-based prophylaxis fine-tuned the central tolerance processes of negative selection and Treg induction, correcting an autoimmune prone T cell repertoire.

13.
J Immunother Cancer ; 10(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35577500

RESUMEN

Despite promising clinical results in a small subset of malignancies, therapies based on engineered chimeric antigen receptor and T-cell receptor T cells are associated with serious adverse events, including cytokine release syndrome and neurotoxicity. These toxicities are sometimes so severe that they significantly hinder the implementation of this therapeutic strategy. For a long time, existing preclinical models failed to predict severe toxicities seen in human clinical trials after engineered T-cell infusion. However, in recent years, there has been a concerted effort to develop models, including humanized mouse models, which can better recapitulate toxicities observed in patients. The Accelerating Development and Improving Access to CAR and TCR-engineered T cell therapy (T2EVOLVE) consortium is a public-private partnership directed at accelerating the preclinical development and increasing access to engineered T-cell therapy for patients with cancer. A key ambition in T2EVOLVE is to design new models and tools with higher predictive value for clinical safety and efficacy, in order to improve and accelerate the selection of lead T-cell products for clinical translation. Herein, we review existing preclinical models that are used to test the safety of engineered T cells. We will also highlight limitations of these models and propose potential measures to improve them.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Receptores Quiméricos de Antígenos , Animales , Síndrome de Liberación de Citoquinas , Humanos , Inmunoterapia Adoptiva/efectos adversos , Ratones , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/genética , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/uso terapéutico , Linfocitos T
14.
J Immunother Cancer ; 10(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35577501

RESUMEN

Immunotherapy with gene engineered CAR and TCR transgenic T-cells is a transformative treatment in cancer medicine. There is a rich pipeline with target antigens and sophisticated technologies that will enable establishing this novel treatment not only in rare hematological malignancies, but also in common solid tumors. The T2EVOLVE consortium is a public private partnership directed at accelerating the preclinical development of and increasing access to engineered T-cell immunotherapies for cancer patients. A key ambition in T2EVOLVE is to assess the currently available preclinical models for evaluating safety and efficacy of engineered T cell therapy and developing new models and test parameters with higher predictive value for clinical safety and efficacy in order to improve and accelerate the selection of lead T-cell products for clinical translation. Here, we review existing and emerging preclinical models that permit assessing CAR and TCR signaling and antigen binding, the access and function of engineered T-cells to primary and metastatic tumor ligands, as well as the impact of endogenous factors such as the host immune system and microbiome. Collectively, this review article presents a perspective on an accelerated translational development path that is based on innovative standardized preclinical test systems for CAR and TCR transgenic T-cell products.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia , Inmunoterapia Adoptiva , Neoplasias/terapia , Linfocitos T
15.
Elife ; 112022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35314027

RESUMEN

Besides the isolation and identification of major histocompatibility complex I-restricted peptides from the surface of cancer cells, one of the challenges is eliciting an effective antitumor CD8+ T-cell-mediated response as part of therapeutic cancer vaccine. Therefore, the establishment of a solid pipeline for the downstream selection of clinically relevant peptides and the subsequent creation of therapeutic cancer vaccines are of utmost importance. Indeed, the use of peptides for eliciting specific antitumor adaptive immunity is hindered by two main limitations: the efficient selection of the most optimal candidate peptides and the use of a highly immunogenic platform to combine with the peptides to induce effective tumor-specific adaptive immune responses. Here, we describe for the first time a streamlined pipeline for the generation of personalized cancer vaccines starting from the isolation and selection of the most immunogenic peptide candidates expressed on the tumor cells and ending in the generation of efficient therapeutic oncolytic cancer vaccines. This immunopeptidomics-based pipeline was carefully validated in a murine colon tumor model CT26. Specifically, we used state-of-the-art immunoprecipitation and mass spectrometric methodologies to isolate >8000 peptide targets from the CT26 tumor cell line. The selection of the target candidates was then based on two separate approaches: RNAseq analysis and HEX software. The latter is a tool previously developed by Jacopo, 2020, able to identify tumor antigens similar to pathogen antigens in order to exploit molecular mimicry and tumor pathogen cross-reactive T cells in cancer vaccine development. The generated list of candidates (26 in total) was further tested in a functional characterization assay using interferon-γ enzyme-linked immunospot (ELISpot), reducing the number of candidates to six. These peptides were then tested in our previously described oncolytic cancer vaccine platform PeptiCRAd, a vaccine platform that combines an immunogenic oncolytic adenovirus (OAd) coated with tumor antigen peptides. In our work, PeptiCRAd was successfully used for the treatment of mice bearing CT26, controlling the primary malignant lesion and most importantly a secondary, nontreated, cancer lesion. These results confirmed the feasibility of applying the described pipeline for the selection of peptide candidates and generation of therapeutic oncolytic cancer vaccine, filling a gap in the field of cancer immunotherapy, and paving the way to translate our pipeline into human therapeutic approach.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Adenoviridae , Animales , Antígenos de Neoplasias , Linfocitos T CD8-positivos , Vacunas contra el Cáncer/uso terapéutico , Línea Celular Tumoral , Inmunoterapia/métodos , Ratones , Neoplasias/tratamiento farmacológico , Péptidos
16.
Sci Transl Med ; 14(631): eabg8027, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35138911

RESUMEN

T cell receptor (TCR)-based therapy has the potential to induce durable clinical responses in patients with cancer by targeting intracellular tumor antigens with high sensitivity and by promoting T cell survival. However, the need for TCRs specific for shared oncogenic antigens and the need for manufacturing protocols able to redirect T cell specificity while preserving T cell fitness remain limiting factors. By longitudinal monitoring of T cell functionality and dynamics in 15 healthy donors, we isolated 19 TCRs specific for Wilms' tumor antigen 1 (WT1), which is overexpressed by several tumor types. TCRs recognized several peptides restricted by common human leukocyte antigen (HLA) alleles and displayed a wide range of functional avidities. We selected five high-avidity HLA-A*02:01-restricted TCRs, three that were specific to the less explored immunodominant WT137-45 and two that were specific to the noncanonical WT1-78-64 epitopes, both naturally processed by primary acute myeloid leukemia (AML) blasts. With CRISPR-Cas9 genome editing tools, we combined TCR-targeted integration into the TCR α constant (TRAC) locus with TCR ß constant (TRBC) knockout, thus avoiding TCRαß mispairing and maximizing TCR expression and function. The engineered lymphocytes were enriched in memory stem T cells. A unique WT137-45-specific TCR showed antigen-specific responses and efficiently killed AML blasts, acute lymphoblastic leukemia blasts, and glioblastoma cells in vitro and in vivo in the absence of off-tumor toxicity. T cells engineered to express this receptor are being advanced into clinical development for AML immunotherapy and represent a candidate therapy for other WT1-expressing tumors.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas WT1 , Antígenos de Neoplasias , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Linfocitos T , Proteínas WT1/genética , Proteínas WT1/metabolismo
17.
Eur J Immunol ; 51(8): 1992-2005, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34081326

RESUMEN

The phenotype of infused cells is a major determinant of Adoptive T-cell therapy (ACT) efficacy. Yet, the difficulty in deciphering multiparametric cytometry data limited the fine characterization of cellular products. To allow the analysis of dynamic and complex flow cytometry samples, we developed cytoChain, a novel dataset mining tool and a new analytical workflow. CytoChain was challenged to compare state-of-the-art and innovative culture conditions to generate stem-like memory cells (TSCM ) suitable for ACT. Noticeably, the combination of IL-7/15 and superoxides scavenging sustained the emergence of a previously unidentified nonexhausted Fit-TSCM signature, overlooked by manual gating and endowed with superior expansion potential. CytoChain proficiently traced back this population in independent datasets, and in T-cell receptor engineered lymphocytes. CytoChain flexibility and function were then further validated on a published dataset from circulating T cells in COVID-19 patients. Collectively, our results support the use of cytoChain to identify novel, functionally critical immunophenotypes for ACT and patients immunomonitoring.


Asunto(s)
Minería de Datos/métodos , Citometría de Flujo/métodos , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , COVID-19/sangre , COVID-19/inmunología , Citocinas/metabolismo , Ingeniería Genética , Humanos , Memoria Inmunológica , Inmunofenotipificación , Inmunoterapia Adoptiva , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/genética , SARS-CoV-2/inmunología
18.
Nat Commun ; 12(1): 1119, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602930

RESUMEN

Regulatory CD4+ T cells (Treg) prevent tumor clearance by conventional T cells (Tconv) comprising a major obstacle of cancer immune-surveillance. Hitherto, the mechanisms of Treg repertoire formation in human cancers remain largely unclear. Here, we analyze Treg clonal origin in breast cancer patients using T-Cell Receptor and single-cell transcriptome sequencing. While Treg in peripheral blood and breast tumors are clonally distinct, Tconv clones, including tumor-antigen reactive effectors (Teff), are detected in both compartments. Tumor-infiltrating CD4+ cells accumulate into distinct transcriptome clusters, including early activated Tconv, uncommitted Teff, Th1 Teff, suppressive Treg and pro-tumorigenic Treg. Trajectory analysis suggests early activated Tconv differentiation either into Th1 Teff or into suppressive and pro-tumorigenic Treg. Importantly, Tconv, activated Tconv and Treg share highly-expanded clones contributing up to 65% of intratumoral Treg. Here we show that Treg in human breast cancer may considerably stem from antigen-experienced Tconv converting into secondary induced Treg through intratumoral activation.


Asunto(s)
Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Linfocitos T Reguladores/inmunología , Antígenos de Neoplasias/metabolismo , Neoplasias de la Mama/sangre , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular , Células Clonales , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Activación de Linfocitos/inmunología , Estadificación de Neoplasias , Receptores de Antígenos de Linfocitos T/inmunología , Análisis de la Célula Individual , Células TH1/inmunología , Transcriptoma/genética
19.
Front Immunol ; 11: 1689, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013822

RESUMEN

Adoptive T cell therapy (ACT) is a rapidly evolving therapeutic approach designed to harness T cell specificity and function to fight diseases. Based on the evidence that T lymphocytes can mediate a potent anti-tumor response, initially ACT solely relied on the isolation, in vitro expansion, and infusion of tumor-infiltrating or circulating tumor-specific T cells. Although effective in a subset of cases, in the first ACT clinical trials several patients experienced disease progression, in some cases after temporary disease control. This evidence prompted researchers to improve ACT products by taking advantage of the continuously evolving gene engineering field and by improving manufacturing protocols, to enable the generation of effective and long-term persisting tumor-specific T cell products. Despite recent advances, several challenges, including prioritization of antigen targets, identification, and optimization of tumor-specific T cell receptors, in the development of tools enabling T cells to counteract the immunosuppressive tumor microenvironment, still need to be faced. This review aims at summarizing the major achievements, hurdles and possible solutions designed to improve the ACT efficacy and safety profile in the context of liquid and solid tumors.


Asunto(s)
Terapia Genética , Inmunoterapia Adoptiva , Neoplasias/terapia , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/trasplante , Animales , Edición Génica , Técnicas de Transferencia de Gen , Terapia Genética/efectos adversos , Humanos , Inmunoterapia Adoptiva/efectos adversos , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/metabolismo , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Resultado del Tratamiento
20.
Arthritis Rheumatol ; 72(4): 565-575, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31682074

RESUMEN

OBJECTIVE: Memory stem T (Tscm) cells are long-lived, self-renewing T cells that play a relevant role in immunologic memory. This study was undertaken to investigate whether Tscm cells accumulate in rheumatoid arthritis (RA). METHODS: The polarization and differentiation profiles of circulating T cells were assessed by flow cytometry. Antigen-specific T cells were characterized by staining with major histocompatibility complex class II tetramers. The T cell receptor (TCR) repertoire was analyzed by high-throughput sequencing using an unbiased RNA-based approach in CD4+ T cell subpopulations sorted by fluorescence-activated cell sorting. RESULTS: We analyzed the dynamics of circulating Tscm cells (identified as CD45RA+CD62L+CD95+ T cells) by flow cytometry in 27 RA patients, 16 of whom were also studied during treatment with the anti-tumor necrosis factor (anti-TNF) agent etanercept. Age-matched healthy donors were used as controls. CD4+ Tscm cells were selectively and significantly expanded in RA patients in terms of frequency and absolute numbers, and significantly contracted upon anti-TNF treatment. Expanded CD4+ Tscm cells displayed a prevalent Th17 phenotype and a skewed TCR repertoire in RA patients, with the 10 most abundant clones representing up to 53.7% of the detected sequences. CD4+ lymphocytes specific for a citrullinated vimentin (Cit-vimentin) epitope were expanded in RA patients with active disease. Tscm cells accounted for a large fraction of Cit-vimentin-specific CD4+ cells. CONCLUSION: Our results indicate that Tscm cells, including expanded clones specific for relevant autoantigens, accumulate in RA patients not exposed to biologic agents, and might be involved in the natural history of the disease. Further analysis of Tscm cell dynamics in autoimmune disorders may have implications for the design and efficacy assessment of innovative therapies.


Asunto(s)
Antirreumáticos/uso terapéutico , Artritis Reumatoide/inmunología , Linfocitos T CD4-Positivos/inmunología , Epítopos de Linfocito T/inmunología , Memoria Inmunológica/inmunología , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Adulto , Anciano , Antirreumáticos/farmacología , Artritis Reumatoide/tratamiento farmacológico , Linfocitos T CD4-Positivos/efectos de los fármacos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Inhibidores del Factor de Necrosis Tumoral/farmacología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...