Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
2.
Viruses ; 16(1)2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38275957

RESUMEN

Classical swine fever (CSF) has been eradicated from Western and Central Europe but remains endemic in parts of Central and South America, Asia, and the Caribbean. CSF virus (CSFV) has been endemic in Cuba since 1993, most likely following an escape of the highly virulent Margarita/1958 strain. In recent years, chronic and persistent infections with low-virulent CSFV have been observed. Amino acid substitutions located in immunodominant epitopes of the envelope glycoprotein E2 of the attenuated isolates were attributed to positive selection due to suboptimal vaccination and control. To obtain a complete picture of the mutations involved in attenuation, we applied forward and reverse genetics using the evolutionary-related low-virulent CSFV/Pinar del Rio (CSF1058)/2010 (PdR) and highly virulent Margarita/1958 isolates. Sequence comparison of the two viruses recovered from experimental infections in pigs revealed 40 amino acid differences. Interestingly, the amino acid substitutions clustered in E2 and the NS5A and NS5B proteins. A long poly-uridine sequence was identified previously in the 3' untranslated region (UTR) of PdR. We constructed functional cDNA clones of the PdR and Margarita strains and generated eight recombinant viruses by introducing single or multiple gene fragments from Margarita into the PdR backbone. All chimeric viruses had comparable replication characteristics in porcine monocyte-derived macrophages. Recombinant PdR viruses carrying either E2 or NS5A/NS5B of Margarita, with 36 or 5 uridines in the 3'UTR, remained low virulent in 3-month-old pigs. The combination of these elements recovered the high-virulent Margarita phenotype. These results show that CSFV evolution towards attenuated variants in the field involved mutations in both structural and non-structural proteins and the UTRs, which act synergistically to determine virulence.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Animales , Porcinos , Virulencia/genética , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/química , Mutación
3.
J Virol Methods ; 323: 114854, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37989458

RESUMEN

African swine fever virus (ASFV) is a complex DNA virus causing severe hemorrhagic disease in domestic pigs and wild boar. The disease has spread worldwide, with important socio-economic consequences. Early virus detection and control measures are crucial as there are no effective vaccines nor antivirals on the market. While the diagnosis of ASFV is fast and based primarily on qPCR, the detection of infectious ASFV is a labor-intensive process requiring susceptible macrophages and subsequent antibody-based staining or hemadsorption. The latter cannot detect ASFV isolates devoid of functional CD2v (EP402R) expression. Here, we report the development of a plasmid-based reporter assay (RA) for the sensitive detection and titration of infectious ASFV. To this end, we constructed a plasmid for secreted NanoLuc luciferase (secNluc) expression driven by the ASFV DNA polymerase gene G1211R promoter. Infection of plasmid-transfected immortalized porcine kidney macrophages (IPKM) followed by measurement of secNluc from cell culture supernatants allowed reliable automated quantification of infectious ASFV. The RA-based titers matched the titers determined by conventional p72-staining or hemadsorption protocols. The novel assay is specific for ASFV as it does not detect classical swine fever virus nor porcine reproductive and respiratory syndrome virus. It is applicable to ASFV of different genotypes, virulence, and sources, including ASFV from sera and whole blood from infected pigs as well as non-hemadsorbing ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Sus scrofa , Virulencia , Macrófagos
4.
J Virol ; 97(7): e0196422, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37358450

RESUMEN

Porcine epidemic diarrhea virus is a swine pathogen that has been responsible for significant animal and economic losses worldwide in recent years. In this manuscript, we report the generation of a reverse genetics system C(RGS) for the highly virulent US PEDV strain Minnesota (PEDV-MN; GenBank accession number KF468752), which was based on the assembly and cloning of synthetic DNA, using vaccinia virus as a cloning vector. Viral rescue was only possible following the substitution of 2 nucleotides within the 5'UTR and 2 additional nucleotides within the spike gene, based on the sequence of the cell culture-adapted strains. Besides displaying a highly pathogenic phenotype in newborn piglets, in comparison with the parental virus, the rescued recombinant PEDV-MN was used to confirm that the PEDV spike gene has an important role in PEDV virulence and that the impact of an intact PEDV ORF3 on viral pathogenicity is modest. Moreover, a chimeric virus with a TGEV spike gene in the PEDV backbone generated with RGS was able to replicate efficiently in vivo and could be readily transmitted between piglets. Although this chimeric virus did not cause severe disease upon the initial infection of piglets, there was evidence of increasing pathogenicity upon transmission to contact piglets. The RGS described in this study constitutes a powerful tool with which to study PEDV pathogenesis and can be used to generate vaccines against porcine enteric coronaviruses. IMPORTANCE PEDV is a swine pathogen that is responsible for significant animal and economic losses worldwide. Highly pathogenic variants can lead to a mortality rate of up to 100% in newborn piglets. The generation of a reverse genetics system for a highly virulent PEDV strain originating from the United States is an important step in phenotypically characterizing PEDV. The synthetic PEDV mirrored the authentic isolate and displayed a highly pathogenic phenotype in newborn piglets. With this system, it was possible to characterize potential viral virulence factors. Our data revealed that an accessory gene (ORF3) has a limited impact on pathogenicity. However, as it is also now known for many coronaviruses, the PEDV spike gene is one of the main determinants of pathogenicity. Finally, we show that the spike gene of another porcine coronavirus, namely, TGEV, can be accommodated in the PEDV genome background, suggesting that similar viruses can emerge in the field via recombination.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Estados Unidos , Porcinos , Virulencia/genética , Virus de la Diarrea Epidémica Porcina/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Genética Inversa , Infecciones por Coronavirus/prevención & control , Nucleótidos , Diarrea
5.
Nanomedicine ; 49: 102655, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36681171

RESUMEN

Herein, we provide the first description of a synthetic delivery method for self-replicating replicon RNAs (RepRNA) derived from classical swine fever virus (CSFV) using a Coatsome-replicon vehicle based on Coatsome® SS technologies. This results in an unprecedented efficacy when compared to well-established polyplexes, with up to ∼65 fold-increase of the synthesis of RepRNA-encoded gene of interest (GOI). We demonstrated the efficacy of such Coatsome-replicon vehicles for RepRNA-mediated induction of CD8 T-cell responses in mice. Moreover, we provide new insights on physical properties of the RepRNA, showing that the removal of all CSFV structural protein genes has a positive effect on the translation of the GOI. Finally, we successfully engineered RepRNA constructs encoding a porcine reproductive and respiratory syndrome virus (PRRSV) antigen, providing an example of antigen expression with potential application to combat viral diseases. The versatility and simplicity of modifying and manufacturing these Coatsome-replicon vehicle formulations represents a major asset to tackle foreseeable emerging pandemics.


Asunto(s)
Enfermedades Transmisibles , ARN , Porcinos , Ratones , Animales , ARN/genética , Antígenos , Enfermedades Transmisibles/genética , Replicón/genética
6.
STAR Protoc ; 3(4): 101688, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36116074

RESUMEN

Here, we present a protocol to analyze the T cell profiles of the neonatal ovine lung during respiratory syncytial virus (RSV) infection. The protocol delivers standardized multiparameter flow cytometry (FCM) analysis of CD4+, CD8+, regulatory, and γδ T cells isolated from lung, lymph nodes, and bronchoalveolar lavages (BALs). We detail the preparation of RSV and transtracheal inoculation of newborn lambs. We then describe tissue isolation and preparation of cell suspensions, followed by FCM acquisition to identify different T cell subsets. For complete details on the use and execution of this protocol, please refer to Démoulins et al. (2021).


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Animales , Ovinos , Infecciones por Virus Sincitial Respiratorio/patología , Citometría de Flujo , Virus Sincitiales Respiratorios , Pulmón/patología , Subgrupos de Linfocitos T
7.
PLoS Pathog ; 18(8): e1010522, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36006954

RESUMEN

African Swine Fever virus (ASFV) is a large double-enveloped DNA virus of the Asfarviridae family that causes a lethal hemorrhagic disease in domestic pigs and wild boars. Since 2007, a highly virulent genotype II strain has emerged and spread in Europe and South-East Asia, where millions of animals succumbed to the disease. Field- and laboratory-attenuated strains of ASFV cause highly variable clinical disease severity and survival, and mechanisms remain unclear. We hypothesized that the immunological and hygienic status of pigs is a determinant of ASF disease course. Here we compared the immunological profile at baseline and in response to ASFV infection in specific pathogen-free (SPF) and farm-raised Large White domestic pigs. At steady state, SPF pigs showed lower white blood cell counts and a lower basal inflammatory and antiviral transcriptomic profile compared to farm pigs, associated with profound differences in gut microbiome composition. After inoculation with a highly virulent ASFV genotype II strain (Armenia 2008), severe clinical signs, viremia and pro-inflammatory cytokines appeared sooner in SPF pigs, indicating a reduced capacity to control early virus replication. In contrast, during infection with an attenuated field isolate (Estonia 2014), SPF pigs presented a milder and shorter clinical disease with full recovery, whereas farm pigs presented severe protracted disease with 50% lethality. Interestingly, farm pigs showed higher production of inflammatory cytokines, whereas SPF pigs produced more anti-inflammatory IL-1ra early after infection and presented a stronger expansion of leukocytes in the recovery phase. Altogether, our data indicate that the hygiene-dependent innate immune status has a double-edge sword impact on immune responses in ASF pathogenesis. While the higher baseline innate immune activity helps the host in reducing initial virus replication, it promotes immunopathological cytokine responses, and delays lymphocyte proliferation after infection with an attenuated strain. Such effects should be considered for live vaccine development and vigilance.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Virus de la Fiebre Porcina Africana/genética , Animales , Citocinas , Higiene , Índice de Severidad de la Enfermedad , Sus scrofa , Porcinos
8.
J Virol ; 96(14): e0043822, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35758667

RESUMEN

In this study, we assessed the potential synergistic effect of the Erns RNase activity and the poly-U insertion in the 3' untranslated region (UTR) of the low-virulence classical swine fever virus (CSFV) isolate Pinar de Rio (PdR) in innate and adaptive immunity regulation and its relationship with classical swine fever (CSF) pathogenesis in pigs. We knocked out the Erns RNase activity of PdR and replaced the long polyuridine sequence of the 3' UTR with 5 uridines found typically at this position, resulting in a double mutant, vPdR-H30K-5U. This mutant induced severe CSF in 5-day-old piglets and 3-week-old pigs, with higher lethality in the newborn (89.5%) than in the older (33.3%) pigs. However, the viremia and viral excretion were surprisingly low, while the virus load was high in the tonsils. Only alpha interferon (IFN-α) and interleukin 12 (IL-12) were highly and consistently elevated in the two groups. Additionally, high IL-8 levels were found in the newborn but not in the older pigs. This points toward a role of these cytokines in the CSF outcome, with age-related differences. The disproportional activation of innate immunity might limit systemic viral spread from the tonsils and increase virus clearance, inducing strong cytokine-mediated symptoms. Infection with vPdR-H30K-5U resulted in poor neutralizing antibody responses compared with results obtained previously with the parent and RNase knockout PdR. This study shows for the first time the synergistic effect of the 3' UTR and the Erns RNase function in regulating innate immunity against CSFV, favoring virus replication in target tissue and thus contributing to disease severity. IMPORTANCE CSF is one of the most relevant viral epizootic diseases of swine, with high economic and sanitary impact. Systematic stamping out of infected herds with and without vaccination has permitted regional virus eradication. However, the causative agent, CSFV, persists in certain areas of the world, leading to disease reemergence. Nowadays, low- and moderate-virulence strains that could induce unapparent CSF forms are prevalent, posing a challenge for disease eradication. Here, we show for the first time the synergistic role of lacking the Erns RNase activity and the 3' UTR polyuridine insertion from a low-virulence CSFV isolate in innate immunity disproportional activation. This might limit systemic viral spread to the tonsils and increase virus clearance, inducing strong cytokine-mediated symptoms, thus contributing to disease severity. These results highlight the role played by the Erns RNase activity and the 3' UTR in CSFV pathogenesis, providing new perspectives for novel diagnostic tools and vaccine strategies.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Síndrome de Liberación de Citoquinas , Regiones no Traducidas 3'/genética , Inmunidad Adaptativa/genética , Animales , Peste Porcina Clásica/inmunología , Peste Porcina Clásica/patología , Peste Porcina Clásica/virología , Virus de la Fiebre Porcina Clásica/enzimología , Virus de la Fiebre Porcina Clásica/genética , Virus de la Fiebre Porcina Clásica/inmunología , Virus de la Fiebre Porcina Clásica/patogenicidad , Síndrome de Liberación de Citoquinas/genética , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/virología , Citocinas , Inmunidad Innata/genética , Interferón-alfa/inmunología , Interleucina-12/inmunología , Ribonucleasas/genética , Ribonucleasas/metabolismo , Porcinos , Vacunas Virales , Virulencia/genética
9.
Vet Microbiol ; 270: 109455, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35576817

RESUMEN

Mycoplasma hyopneumoniae is the etiological agent of enzootic pneumonia (EP), an economically important chronic respiratory disease in pigs. M. hyopneumoniae impacts the mucociliary clearance system by disrupting the cilia and modulates the immune response, resulting in intermittent dry non-productive cough. For progressive control of EP in Switzerland, a corresponding programme was fully implemented in 2004. It is based on total depopulation strategies of affected fattening farms as well as partial depopulation in breeding farms. Surveillance of EP status in Switzerland is mainly based on real-time PCR of nasal swabs from coughing animals or suspicious lungs and thereby sporadic cases are still observed every year. In order to obtain information on the seroprevalence, serum samples of 5021 sows from 968 farms collected in 2018 at eight different slaughterhouses were analyzed for the presence of M. hyopneumoniae-specific antibodies using a commercial ELISA kit. The overall seroprevalence was low with 0.98% of sows testing positive and these seropositive animals could be allocated to 3.92% of farms tested. Most seropositive farms presented weakly positive singleton reactors and only one farm showed several strongly seropositive animals. In conclusion, the serological status mirrors the successful progressive control of M. hyopneumoniae in the Swiss domestic pig population over the years. The current study underlines the added value of serological testing in the surveillance of EP in a country with low prevalence and confirms the sustained benefit of strategic control programmes.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Neumonía , Enfermedades de los Porcinos , Animales , Femenino , Neumonía/veterinaria , Neumonía Porcina por Mycoplasma/epidemiología , Neumonía Porcina por Mycoplasma/prevención & control , Estudios Seroepidemiológicos , Sus scrofa , Porcinos , Suiza/epidemiología
10.
Viruses ; 13(10)2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34696447

RESUMEN

The sera from pigs infected with virulent classical swine fever virus (CSFV) contain substantial amounts of tumor necrosis factor (TNF), a prototype proinflammatory cytokine with pleiotropic activities. TNF limits the replication of CSFV in cell culture. In order to investigate the signaling involved in the antiviral activity of TNF, we employed small-molecule inhibitors to interfere specifically with JAK/STAT and NF-κB signaling pathways in near-to-primary endothelial PEDSV.15 cells. In addition, we knocked out selected factors of the interferon (IFN) induction and signaling pathways using CRISPR/Cas9. We found that the anti-CSFV effect of TNF was sensitive to JAK/STAT inhibitors, suggesting that TNF induces IFN signaling. Accordingly, we observed that the antiviral effect of TNF was dependent on intact type I IFN signaling as PEDSV.15 cells with the disrupted type I IFN receptor lost their capacity to limit the replication of CSFV after TNF treatment. Consequently, we examined whether TNF activates the type I IFN induction pathway. With genetically modified PEDSV.15 cells deficient in functional interferon regulatory factor 1 or 3 (IRF1 or IRF3), we observed that the anti-CSFV activity exhibited by TNF was dependent on IRF1, whereas IRF3 was dispensable. This was distinct from the lipopolysaccharide (LPS)-driven antiviral effect that relied on both IRF1 and IRF3. In agreement with the requirement of IRF1 to induce TNF- and LPS-mediated antiviral effects, intact IRF1 was also essential for TNF- and LPS-mediated induction of IFN-ß mRNA, while the activation of NF-κB was not dependent on IRF1. Nevertheless, NF-κB activation was essential for the TNF-mediated antiviral effect. Finally, we observed that CSFV failed to counteract the TNF-mediated induction of the IFN-ß mRNA in PEDSV.15 cells, suggesting that CSFV does not interfere with IRF1-dependent signaling. In summary, we report that the proinflammatory cytokine TNF limits the replication of CSFV in PEDSV.15 cells by specific induction of an IRF1-dependent antiviral type I IFN response.


Asunto(s)
Virus de la Fiebre Porcina Clásica/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Replicación Viral/fisiología , Animales , Peste Porcina Clásica/virología , Virus de la Fiebre Porcina Clásica/efectos de los fármacos , Virus de la Fiebre Porcina Clásica/patogenicidad , Citocinas/metabolismo , Expresión Génica/genética , Regulación Viral de la Expresión Génica/genética , Interacciones Huésped-Patógeno , Factor 1 Regulador del Interferón/metabolismo , Interferón beta/genética , Interferones/metabolismo , Janus Quinasa 1/metabolismo , FN-kappa B/metabolismo , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Porcinos , Inhibidores del Factor de Necrosis Tumoral/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
11.
STAR Protoc ; 2(3): 100803, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34527959

RESUMEN

This protocol describes a synthetic genomics pipeline to clone and engineer the entire 190-kbp genome of the African swine fever virus (ASFV) genotype II in yeast using transformation-associated recombination cloning. The viral genome was cloned using DNA directly extracted from a clinical sample. In addition, the precise deletion of a non-essential gene and its replacement by a synthetic reporter gene cassette are presented. This protocol is applicable to other ASFV genotypes and other large DNA viruses.


Asunto(s)
Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/virología , Ingeniería Genética/métodos , Saccharomyces cerevisiae/genética , Animales , ADN Viral/genética , Genómica , Porcinos , Biología Sintética
12.
Virulence ; 12(1): 2037-2049, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34339338

RESUMEN

The prevalence of low virulence classical swine fever virus (CSFV) strains makes viral eradication difficult in endemic countries. However, the determinants for natural CSFV attenuation and persistence in the field remain unidentified. The aim of the present study was to assess the role of the RNase activity of CSFV Erns in pathogenesis, immune response, persistent infection, and viral transmission in pigs. To this end, a functional cDNA clone pPdR-H30K-36U with an Erns lacking RNase activity was constructed based on the low virulence CSFV field isolate Pinar de Rio (PdR). Eighteen 5-day-old piglets were infected with vPdR-H30K-36U. Nine piglets were introduced as contacts. The vPdR-H30K-36U virus was attenuated in piglets compared to the parental vPdR-36U. Only RNA traces were detected in sera and body secretions and no virus was isolated from tonsils, showing that RNase inactivation may reduce CSFV persistence and transmissibility. The vPdR-H30K-36U mutant strongly activated the interferon-α (IFN-α) production in plasmacytoid dendritic cells, while in vivo, the IFN-α response was variable, from moderate to undetectable depending on the animal. This suggests a role of the CSFV Erns RNase activity in the regulation of innate immune responses. Infection with vPdR-H30K-36U resulted in higher antibody levels against the E2 and Erns glycoproteins and in enhanced neutralizing antibody responses when compared with vPdR-36U. These results pave the way toward a better understanding of viral attenuation mechanisms of CSFV in pigs. In addition, they provide novel insights relevant for the development of DIVA vaccines in combination with diagnostic assays for efficient CSF control.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Inmunidad Humoral , Ribonucleasas , Animales , Peste Porcina Clásica/inmunología , Peste Porcina Clásica/transmisión , Virus de la Fiebre Porcina Clásica/enzimología , Infección Persistente , Ribonucleasas/genética , Porcinos , Virulencia
13.
PLoS Pathog ; 17(7): e1009789, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34320038

RESUMEN

Lung-resident (LR) mesenchymal stem and stromal cells (MSCs) are key elements of the alveolar niche and fundamental regulators of homeostasis and regeneration. We interrogated their function during virus-induced lung injury using the highly prevalent respiratory syncytial virus (RSV) which causes severe outcomes in infants. We applied complementary approaches with primary pediatric LR-MSCs and a state-of-the-art model of human RSV infection in lamb. Remarkably, RSV-infection of pediatric LR-MSCs led to a robust activation, characterized by a strong antiviral and pro-inflammatory phenotype combined with mediators related to T cell function. In line with this, following in vivo infection, RSV invades and activates LR-MSCs, resulting in the expansion of the pulmonary MSC pool. Moreover, the global transcriptional response of LR-MSCs appears to follow RSV disease, switching from an early antiviral signature to repair mechanisms including differentiation, tissue remodeling, and angiogenesis. These findings demonstrate the involvement of LR-MSCs during virus-mediated acute lung injury and may have therapeutic implications.


Asunto(s)
Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/virología , Pulmón/inmunología , Células Madre Mesenquimatosas/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Animales , Humanos , Pulmón/citología , Pulmón/metabolismo , Células Madre Mesenquimatosas/metabolismo , Infecciones por Virus Sincitial Respiratorio/metabolismo , Virus Sincitial Respiratorio Humano/inmunología , Ovinos
14.
Emerg Infect Dis ; 27(7): 1811-1820, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34152956

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally, and the number of worldwide cases continues to rise. The zoonotic origins of SARS-CoV-2 and its intermediate and potential spillback host reservoirs, besides humans, remain largely unknown. Because of ethical and experimental constraints and more important, to reduce and refine animal experimentation, we used our repository of well-differentiated airway epithelial cell (AEC) cultures from various domesticated and wildlife animal species to assess their susceptibility to SARS-CoV-2. We observed that SARS-CoV-2 replicated efficiently only in monkey and cat AEC culture models. Whole-genome sequencing of progeny viruses revealed no obvious signs of nucleotide transitions required for SARS-CoV-2 to productively infect monkey and cat AEC cultures. Our findings, together with previous reports of human-to-animal spillover events, warrant close surveillance to determine the potential role of cats, monkeys, and closely related species as spillback reservoirs for SARS-CoV-2.


Asunto(s)
Animales Salvajes , COVID-19 , Animales , Células Epiteliales , Humanos , Sistema Respiratorio , SARS-CoV-2
15.
PLoS Pathog ; 17(4): e1009529, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33909707

RESUMEN

The human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infections in infants, possibly due to the properties of the immature neonatal pulmonary immune system. Using the newborn lamb, a classical model of human lung development and a translational model of RSV infection, we aimed to explore the role of cell-mediated immunity in RSV disease during early life. Remarkably, in healthy conditions, the developing T cell compartment of the neonatal lung showed major differences to that seen in the mature adult lung. The most striking observation being a high baseline frequency of bronchoalveolar IL-4-producing CD4+ and CD8+ T cells, which declined progressively over developmental age. RSV infection exacerbated this pro-type 2 environment in the bronchoalveolar space, rather than inducing a type 2 response per se. Moreover, regulatory T cell suppressive functions occurred very early to dampen this pro-type 2 environment, rather than shutting them down afterwards, while γδ T cells dropped and failed to produce IL-17. Importantly, RSV disease severity was related to the magnitude of those unconventional bronchoalveolar T cell responses. These findings provide novel insights in the mechanisms of RSV immunopathogenesis in early life, and constitute a major step for the understanding of RSV disease severity.


Asunto(s)
Pulmón/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones del Sistema Respiratorio/inmunología , Linfocitos T/patología , Animales , Animales Recién Nacidos , Diferenciación Celular/inmunología , Células Cultivadas , Preescolar , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Pulmón/crecimiento & desarrollo , Pulmón/patología , Pulmón/virología , Infecciones por Virus Sincitial Respiratorio/congénito , Infecciones por Virus Sincitial Respiratorio/patología , Infecciones del Sistema Respiratorio/congénito , Infecciones del Sistema Respiratorio/patología , Ovinos/crecimiento & desarrollo , Ovinos/inmunología , Linfocitos T/inmunología , Linfocitos T/fisiología
16.
Vaccines (Basel) ; 9(3)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801369

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) causes severe respiratory distress and reproductive failure in swine. Modified live virus (MLV) vaccines provide the highest degree of protection and are most often the preferred choice. While somewhat protective, the use of MLVs is accompanied by multiple safety issues, why safer alternatives are urgently needed. Here, we describe the generation of virus replicon particles (VRPs) based on a classical swine fever virus genome incapable of producing infectious progeny and designed to express conserved PRRSV-2 cytotoxic T-cell epitopes. Eighteen pigs matched with the epitopes by their swine leucocyte antigen-profiles were vaccinated (N = 11, test group) or sham-vaccinated (N = 7, control group) with the VRPs and subsequently challenged with PRRSV-2. The responses to vaccination and challenge were monitored using serological, immunological, and virological analyses. Challenge virus load in serum did not differ significantly between the groups, whereas the virus load in the caudal part of the lung was significantly lower in the test group compared to the control group. The number of peptide-induced interferon-γ secreting cells after challenge was higher and more frequent in the test group than in the control group. Together, our results provide indications of a shapeable PRRSV-specific cell-mediated immune response that may inspire future development of effective PRRSV vaccines.

17.
Virus Res ; 289: 198151, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32898613

RESUMEN

Classical swine fever (CSF) is among the most relevant viral epizootic diseases of swine. Due to its severe economic impact, CSF is notifiable to the world organisation for animal health. Strict control policies, including systematic stamping out of infected herds with and without vaccination, have permitted regional virus eradication. Nevertheless, CSF virus (CSFV) persists in certain areas of the world and has re-emerged regularly. This review summarizes the basic established knowledge in the field and provides a comprehensive and updated overview of the recent advances in fundamental CSFV research, diagnostics and vaccine development. It covers the latest discoveries on the genetic diversity of pestiviruses, with implications for taxonomy, the progress in understanding disease pathogenesis, immunity against acute and persistent infections, and the recent findings in virus-host interactions and virulence determinants. We also review the progress and pitfalls in the improvement of diagnostic tools and the challenges in the development of modern and efficacious marker vaccines compatible with serological tests for disease surveillance. Finally, we highlight the gaps that require research efforts in the future.


Asunto(s)
Virus de la Fiebre Porcina Clásica/genética , Peste Porcina Clásica , Animales , Peste Porcina Clásica/diagnóstico , Peste Porcina Clásica/epidemiología , Peste Porcina Clásica/virología , Porcinos
18.
Front Immunol ; 11: 1429, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733474

RESUMEN

The present study investigated the transcriptomic response of porcine dendritic cells (DC) to innate stimulation in vitro and in vivo. The aim was to identify DC subset-specialization, suitable Toll-like receptor (TLR) ligands targeting plasmacytoid DC (pDC), and the DC activation profile during highly and low virulent classical swine fever virus (CSFV, strain Eystrup and Pinar del Rio, respectively) infection, chosen as model for a virus causing a severe immunopathology. After identification of porcine conventional DC (cDC) 1, cDC2, pDC and a monocyte-derived subset in lymphoid tissues, we characterized DC activation using transcriptomics, and focused on chemokines, interferons, cytokines, as well as on co-stimulatory and inhibitory molecules. We demonstrate that porcine pDC provide important signals for Th1 and interferon responses, with CpG triggering the strongest responses in pDC. DC isolated early after infection of pigs with either of the two CSFV strains showed prominent upregulation of CCL5, CXCL9, CXCL10, CXCL11, and XCL1, as well as of the cytokines TNFSF13B, IL6, IL7, IL12B, IL15, IL27. Transcription of IL12B and many interferon genes were mostly restricted to pDC. Interestingly, the infection was associated with a prominent induction of inhibitory and cell death receptors. When comparing low and highly virulent CSFV strains, the latter induced a stronger inflammatory and antiviral response but a weaker cell cycle response, and reduced antigen presentation functions of DC. Taken together, we provide high-resolution information on DC activation in pigs, as well as information on how DC modulation could be linked to CSFV immunopathology.


Asunto(s)
Peste Porcina Clásica/inmunología , Células Dendríticas/inmunología , Inmunidad Innata/inmunología , Porcinos/inmunología , Animales , Virus de la Fiebre Porcina Clásica/inmunología , Porcinos/virología
19.
PLoS Negl Trop Dis ; 14(6): e0008357, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32589646

RESUMEN

Mycolactones, macrolide cytotoxins, are key virulence factors of Mycobacterium ulcerans, the etiological agent of the chronic necrotizing skin disease Buruli ulcer. There is urgent need for a simple point-of-care laboratory test for Buruli ulcer and mycolactone represents a promising target for the development of an immunological assay. However, for a long time, all efforts to generate mycolactone-specific antibodies have failed. By using a protein conjugate of a truncated non-toxic synthetic mycolactone derivative, we recently described generation of a set of mycolactone-specific monoclonal antibodies. Using the first mycolactone-specific monoclonal antibodies that we have described before, we were able to develop an antigen competition assay that detects mycolactones. By the systematic selection of a capturing antibody and a reporter molecule, and the optimization of assay conditions, we developed an ELISA that detects common natural variants of mycolactone with a limit of detection in the low nanomolar range. The mycolactone-specific ELISA described here will be a very useful tool for research on the biology of this macrolide toxin. After conversion into a simple point-of-care test format, the competition assay may have great potential as laboratory assay for both the diagnosis of Buruli ulcer and for the monitoring of treatment efficacy.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática/métodos , Macrólidos/inmunología , Macrólidos/aislamiento & purificación , Mycobacterium ulcerans/metabolismo , Animales , Anticuerpos Monoclonales , Úlcera de Buruli/diagnóstico , Úlcera de Buruli/microbiología , Modelos Animales de Enfermedad , Humanos , Macrólidos/química , Ratones , Ratones Endogámicos BALB C , Técnicas de Diagnóstico Molecular/métodos , Mycobacterium ulcerans/aislamiento & purificación , Sensibilidad y Especificidad
20.
J Gen Virol ; 101(2): 156-167, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31922948

RESUMEN

Several pigeon paramyxovirus-1 (PPMV-1) outbreaks in feral pigeons were described recently in Switzerland. The potential of PPMV-1 to induce the notifiable Newcastle disease in chickens is discussed controversially. Therefore, in order to study epidemiologically relevant parameters such as the kinetics of PPMV-1 replication and shedding as well as seroconversion after infection, chickens were infected experimentally with a Swiss PPMV-1 isolate. This generated also defined sample material for the comparison of diagnostic tests. The infectivity of the Swiss PPMV-1 isolate for chickens was demonstrated successfully by virus shedding after experimental inoculation. Our data suggest that long-lasting shedding for up to 60 days can occur in chickens infected with PPMV-1. The isolate used here was of low pathogenicity for chickens. Different quantitative reverse transcription PCR assays were evaluated with a set of Swiss PPMV-1 isolates, and various samples from experimentally infected chickens were analysed with respect to their suitability for viral RNA detection. At 14 days post-infection, virus genome was detected mainly in spleen, caecal tonsils, heart, cloacal swabs, liver, proventriculus, duodenum and kidney tissue samples. Overall, the level of virus replication was low. Not all assays used routinely in diagnostics were capable of detecting viral genome from the isolates tested. Possible explanations are the genetic divergence of PPMV-1 and the low level of viral RNA in the samples. In contrast, two methods that are not used routinely proved more suitable for virus-genome detection. Importantly, the collection of material from various different organs is recommended, in addition to the kidney and brain analysed routinely. In conclusion, this study shows that there is a need to reconsider the type of samples and the protocols used for the detection of PPMV-1 RNA in chickens.


Asunto(s)
Infecciones por Avulavirus/diagnóstico , Avulavirus , Enfermedad de Newcastle/diagnóstico , Animales , Avulavirus/genética , Avulavirus/crecimiento & desarrollo , Avulavirus/aislamiento & purificación , Avulavirus/patogenicidad , Infecciones por Avulavirus/patología , Pollos , Columbidae/virología , Genoma Viral , Enfermedad de Newcastle/patología , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/crecimiento & desarrollo , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Virus de la Enfermedad de Newcastle/patogenicidad , Enfermedades de las Aves de Corral/virología , Suiza , Virosis/veterinaria , Replicación Viral , Esparcimiento de Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...