Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(12)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38530011

RESUMEN

We report high-level calculations of the excited states of [2,2]-paracyclophane (PCP), which was recently investigated experimentally by ultrafast pump-probe experiments on oriented single crystals [Haggag et al., ChemPhotoChem 6 e202200181 (2022)]. PCP, in which the orientation of the two benzene rings and their range of motion are constrained, serves as a model for studying benzene excimer formation. The character of the excimer state and the state responsible for the brightest transition are similar to those of the benzene dimer. The constrained structure of PCP allows one to focus on the most important degree of freedom, the inter-ring distance. The calculations explain the main features of the transient absorption spectral evolution. This brightest transition of the excimer is polarized along the inter-fragment axis. The absorption of the light polarized in the plane of the rings reveals the presence of other absorbing states of Rydberg character, with much weaker intensities. We also report new transient absorption data obtained by a broadband 8 fs pump, which time-resolve strong modulations of the excimer absorption. The combination of theory and experiment provides a detailed picture of the evolution of the electronic structure of the PCP excimer in the course of a single molecular vibration.

2.
Nat Commun ; 15(1): 2136, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459010

RESUMEN

Discovered over 50 years ago, bacteriorhodopsin is the first recognized and most widely studied microbial retinal protein. Serving as a light-activated proton pump, it represents the archetypal ion-pumping system. Here we compare the photochemical dynamics of bacteriorhodopsin light and dark-adapted forms with that of the first metastable photocycle intermediate known as "K". We observe that following thermal double isomerization of retinal in the dark from bio-active all-trans 15-anti to 13-cis, 15-syn, photochemistry proceeds even faster than the ~0.5 ps decay of the former, exhibiting ballistic wave packet curve crossing to the ground state. In contrast, photoexcitation of K containing a 13-cis, 15-anti chromophore leads to markedly multi-exponential excited state decay including much slower stages. QM/MM calculations, aimed to interpret these results, highlight the crucial role of protonation, showing that the classic quadrupole counterion model poorly reproduces spectral data and dynamics. Single protonation of ASP212 rectifies discrepancies and predicts triple ground state structural heterogeneity aligning with experimental observations. These findings prompt a reevaluation of counter ion protonation in bacteriorhodopsin and contribute to the broader understanding of its photochemical dynamics.


Asunto(s)
Bacteriorodopsinas , Bacteriorodopsinas/química , Fotoquímica , Bombas de Protones , Luz
3.
Nature ; 615(7952): 535-540, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36859551

RESUMEN

Energy transfer from light-harvesting ketocarotenoids to the light-driven proton pump xanthorhodopsins has been previously demonstrated in two unique cases: an extreme halophilic bacterium1 and a terrestrial cyanobacterium2. Attempts to find carotenoids that bind and transfer energy to abundant rhodopsin proton pumps3 from marine photoheterotrophs have thus far failed4-6. Here we detected light energy transfer from the widespread hydroxylated carotenoids zeaxanthin and lutein to the retinal moiety of xanthorhodopsins and proteorhodopsins using functional metagenomics combined with chromophore extraction from the environment. The light-harvesting carotenoids transfer up to 42% of the harvested energy in the violet- or blue-light range to the green-light absorbing retinal chromophore. Our data suggest that these antennas may have a substantial effect on rhodopsin phototrophy in the world's lakes, seas and oceans. However, the functional implications of our findings are yet to be discovered.


Asunto(s)
Organismos Acuáticos , Procesos Fototróficos , Bombas de Protones , Rodopsinas Microbianas , Organismos Acuáticos/metabolismo , Organismos Acuáticos/efectos de la radiación , Bacterias/metabolismo , Bacterias/efectos de la radiación , Carotenoides/metabolismo , Color , Cianobacterias/metabolismo , Cianobacterias/efectos de la radiación , Procesos Heterotróficos/efectos de la radiación , Luz , Océanos y Mares , Procesos Fototróficos/efectos de la radiación , Bombas de Protones/metabolismo , Bombas de Protones/efectos de la radiación , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/efectos de la radiación , Zeaxantinas/metabolismo , Zeaxantinas/efectos de la radiación , Luteína/metabolismo , Luteína/efectos de la radiación , Metagenoma , Lagos
4.
J Phys Chem Lett ; 13(34): 8134-8140, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36000820

RESUMEN

The decades-long ultrafast examination of nearly a dozen microbial retinal proteins, ion pumps, and sensory photoreceptors has not identified structure-function indicators which predict photoisomerization dynamics, whether it will be sub-picosecond and ballistic or drawn out with complex curve-crossing kinetics. Herein, we report the emergence of such an indicator. Using pH control over retinal isomer ratios, photoinduced transient absorption is recorded in an inward proton pumping Antarctic microbial rhodopsin (AntR) for 13-cis and all-trans retinal resting states. The all-trans fluorescent state decays with 1 ps exponential kinetics. In contrast, in 13-cis it decays within ∼300 fs accompanied by continuous spectral evolution, indicating ballistic internal conversion. The coherent wave packet nature of 13-cis isomerization in AntR matches published results for bacteriorhodopsin (BR) and Anabaena sensory rhodopsin (ASR), which also accommodate both all-trans and 13-cis retinal resting states, marking the emergence of a first structure-photodynamics indicator which holds for all three tested pigments.


Asunto(s)
Anabaena , Bacteriorodopsinas , Rodopsinas Sensoriales , Regiones Antárticas , Isomerismo , Rodopsinas Microbianas/metabolismo
5.
Phys Chem Chem Phys ; 24(4): 2357-2362, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35018908

RESUMEN

Due to their unique excited state dynamics, acenes play a dominant role in optoelectronic and light-harvesting applications. Their optical and electronic properties are typically tailored by side-group engineering, which often result in distortion of the acene core from planarity. However, the effect of such distortion on their excited state dynamics is not clear. In this work, we investigate the effect of twisting on the photophysics of acenes, which are helically locked to a defined twist angle by tethers of different lengths. Ultrafast transient absorption and time resolved fluorescence show a clear dependence of the rate of intersystem crossing with twisting. This trend is explained using quantum chemical calculations, showing an increase of spin-orbit coupling (SOC). At much earlier times, structural reorganization in S1, including coherent vibrational wave packet motions, is reflected in transient spectral changes. As predicted by theory, decreasing the length of diagonal tether induces enhanced activity and frequency blue-shifting of a normal vibration consisting of anthracene twisting against restraint of the tethering chain. Overall, these results serve as design principles for tuning photophysical properties of acenes via controlled twisting of their aromatic core.

6.
Chemistry ; 27(71): 17794-17801, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34747542

RESUMEN

In π-conjugated macrocycles, there is a trade-off between the global and local expression of effects such as aromaticity, with the outcome of the trade-off determined by the geometry and aromaticity of the constituent units. Compared with other aromatic rings, the aromatic character of furan is relatively small, and therefore global effects in macrocyclic furans are expected to be more pronounced. Following our introduction of macrocyclic oligofuran, we present the first synthesis of a series of π-conjugated bifuran macrocycles of various ring sizes, from trimer to hexamer, and characterize them using both computational and experimental methods. The properties of macrocyclic oligofurans change considerably with size: The smaller trimer is rigid, weakly emissive and planar as revealed by its single crystal structure, and displays global antiaromaticity. In contrast, the larger pentamer and hexamer are flexible, emissive, have non-planar structures, and exhibit local aromaticity. The results are supported by NICS and ACID calculations that indicate the global antiaromaticity of planar furan macrocycles, and by transient absorption measurements showing sharp absorption band for the trimer and only the internal conversion decay pathway.


Asunto(s)
Conformación Molecular
7.
J Phys Chem Lett ; 12(38): 9336-9343, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34549584

RESUMEN

Absolute absorption changes in molecular flash photolysis experiments are routinely translated into molar extinction coefficients and oscillator strengths of reactive intermediates. These direct quantum chemical investigation and allow precise concentration readings in later experiments. In this Perspective we show how a similar approach can deliver crucial information for interpreting transient absorption spectra in colloidal semiconductor quantum dots. The intrinsic complexity of such samples stemming from the inhomogeneity of particle size, shape, and surface chemistry poses unique challenges to mechanistic assignment of ultrafast pump-probe measurements. We will describe applications of this approach to elucidate the photophysics of quantum confined nanocrystals made of various semiconducting materials. These case studies demonstrate how, faced with conflicting interpretations, it has pointed in the right direction in assessing single and multiple exciton generation and relaxation, in searches for ultrafast carrier trapping and scavenging, and in tests of band edge level structure and state degeneracies.

8.
ACS Nano ; 15(5): 9039-9047, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33974397

RESUMEN

Transient absorption measurements were conducted on pristine and monoexciton saturated CsPbBr3 nanocrystals varying in size within the regime of a strong quantum confinement. Once the difference spectra were translated to absolute transient changes in absorption cross section, a single exciton is shown to completely bleach the band edge absorption peak and induce a new absorption roughly two times weaker ∼100 meV to the blue. Difference spectra obtained during Auger recombination of biexciton demonstrate that the addition of a second exciton, rather than double the effect of a first, bleaches the blue-induced absorption band without producing a net stimulated emission at the band edge. Accompanied by high time resolution transient absorption spectra pumping at the lowest exciton band, these results identify the blue-induced absorption as the second transition to 1Se1Sh which is shifted in energy due to unusually strong and promptly rising biexciton repulsion. Possible mechanisms giving rise to this repulsion and prospects for applying it to enhance optical gain applications of these particles are discussed.

9.
Nanoscale ; 13(3): 1982-1987, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33443522

RESUMEN

Numerous studies have reported that transient absorption spectra in core CdSe nanocrystals do not register state filling in 1Sh, an absence which has profound consequences in light-emitting applications. It has been assigned alternatively to rapid hole trapping, or to distribution over a dense degenerate valence band manifold which includes dark states. Here we attempt to observe early contributions of nascent holes to the bleaching of the band edge exciton transition by conducting 1Se1Sh pump-1Se1Sh probe spectroscopy with <10 fs laser pulses on organic ligand passivated CdSe crystals. The results show no rapidly hole-state filling effects in transient absorption measurements even at the earliest delay, despite the use of pulses which are capable of resolving all dissipation mechanisms reflected in the homogeneous 1Se1Sh bandwidth. This proves that neither hole trapping nor rapid redistribution of the nascent hole over energetically available valence band states can explain the absence of hole contributions to band edge bleaching, calling for a mechanistic review of this phenomenon.

10.
Phys Chem Chem Phys ; 22(18): 10043-10055, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32338267

RESUMEN

Despite decades of investigation, mechanistic details of aqueous permanganate photo-decomposition remain unclear. Here we follow photoinduced dynamics of aqueous permanganate with femtosecond spectroscopy. Photoexcitation of KMnO4(aq) in the visible unleashes a sub-picosecond cascade of non-radiative transitions, leading to a distinct species which relaxes to S0 with a lifetime of 16 ps. Tuning excitation to the UV shows increasing formation of a metastable intermediate, which outlives our ∼1 ns window of detection. Guided by electronic structure calculations and observations from three pulse excitation experiments, we assign the 16 ps species as the lowest Jahn-Teller component of the 3T1 triplet state and suggest a plausible sequence of radiationless transitions, which rapidly populate it. In conjunction with photodecomposition quantum yields obtained from the literature, these results demonstrate that aqueous permanganate photo-decomposition proceeds through a long-lived intermediate which is formed in parallel to the triplet in less than one ps upon UV absorption. The possibility that this is the postulated highly oxidative peroxo species, a fraction of which leads to the stable (MnO2- + O2) fragments, is discussed. Finally, periodic modulations detected in the pump-probe signal are assigned to ground-state vibrational coherences excited by impulsive Raman. Their wavelength-dependent absolute phases outline the borders between adjacent electronic transitions in the linear spectrum of permanganate.

11.
J Phys Chem Lett ; 10(10): 2341-2348, 2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31002253

RESUMEN

The conjecture that, as in bulk semiconductors, hot multiexcitons in nanocrystals cool rapidly to the lowest available energy levels is tested here by recording the effects of a single cold "spectator" exciton on the relaxation dynamics of a subsequently deposited hot counterpart. Results in CdSe/CdS nanodots show that a preexisting cold "spectator exciton" allows only half of the photoexcited electrons to relax directly to the band-edge. The rest are blocked in an excited quantum state due to conflicts in spin orientation. The latter fully relax in this sample only after ∼25 ps as the blocked electrons spins flip, prolonging the temporal window of opportunity for harvesting the retained energy more than 100 fold! Common to all quantum-confined nanocrystals, this process will delay cooling and impact the spectroscopic signatures of hot multiexcitons in all envisioned generation scenarios. How the spin-flipping rate scales with particle size and temperature remains to be determined.

12.
Chemistry ; 24(46): 12084-12092, 2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30048017

RESUMEN

By comparing two-dimensional electronic spectroscopy (2DES) and Pump-Probe (PP) measurements on xanthorhodopsin (XR) and reduced-xanthorhodopsin (RXR) complexes, the ultrafast carotenoid-to-retinal energy transfer pathway is revealed, at very early times, by an excess of signal amplitude at the associated cross-peak and by the carotenoid bleaching reduction due to its ground state recovery. The combination of the measured 2DES and PP spectroscopic data with theoretical modelling allows a clear identification of the main experimental signals and a comprehensive interpretation of their origin and dynamics. The remarkable velocity of the energy transfer, despite the non-negligible energy separation between the two chromophores, and the analysis of the underlying transport mechanism, highlight the role played by the ground state carotenoid vibrations in assisting the process.

13.
ACS Nano ; 12(6): 5719-5725, 2018 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-29727155

RESUMEN

Due to the sizable refractive index of lead halide perovskites, reflectivity off their interface with air exceeds 15%. This has prompted a number of investigations into the prominence of photoreflective contributions to pump-probe data in these materials, with conflicting results. Here we report experiments aimed at assessing this by comparing transient transmission from lead halide perovskite films and weakly quantum confined nanocrystals of cesium lead iodide (CsPbI3) perovskite. By analyzing how complex refractive index changes impact the two experiments, results demonstrate that changes in absorption and not reflection dominate transient transmission measurements in thin films of these materials. None of the characteristic spectral signatures reported in such experiments are exclusively due to or even strongly affected by changes in sample reflectivity. This finding is upheld by another experiment where a methyl ammonium lead iodide (MAPbI3) perovskite film was formed on high-index flint glass and probed after pump irradiation from either face of the sample. We conclude that interpretations of ultrafast pump-probe experiments on thin perovskite films in terms of photoinduced changes in absorption alone are qualitatively sound, requiring relatively minor adjustments to factor in photoreflective effects.

14.
J Am Chem Soc ; 139(50): 18262-18270, 2017 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-29172490

RESUMEN

Sub-10 fs resolution pump-probe experiments on methylammonium lead halide perovskite films are described. Initial response to photoexcitation is assigned to localized hot excitons which dissociate to free carriers. This is attested to by band integrals of the pump-probe spectra where photoinduced bleaching rises abruptly 20 fs after photoexcitation. Later stages of spectral evolution are consistent with hot carrier cooling, during which state filling induced bleaching of interband and exciton transitions curiously more than doubles. Electron coupling to optical phonons is observed as periodic spectral modulations in the pump-probe data of both films. Fourier analysis identifies active phonons at ∼100 and 300 wavenumbers pertaining to the lead-halide framework and organic cation motions, respectively. Coupling strengths estimated from the depth of these modulations are in the weak coupling limit, in agreement with values extracted from temperature dependent emission line shape analysis. These findings support free carriers in these materials existing as large polarons. Accordingly, these modes are probably not dictating the moderate carrier mobility in this material.

15.
J Phys Chem Lett ; 8(8): 1920-1924, 2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28388046

RESUMEN

Impulsive Raman excitation in neat organic liquids far from resonance is followed using chirped broad-band supercontinuum probe pulses. Spectral modulations due to impulsively induced coherent vibrations vary in intensity 10-fold as a function of the probe's linear chirp. Simulations clarify why the vibrational signature is maximized for a group delay dispersion (GDD) in reduced units of νvib-2 = 0.5 while a probe GDD of twice that quenches the same spectral modulations. Accordingly, recent claims that chirped white-light probe pulses provide equivalent information on material response to their compressed analogues must be taken with caution. In particular, interactions that induce spectral shifts in the probe depend crucially on the arrival chronology of the continuum colors. On one hand, this presents limitations to application of chirped continuum radiation as-is in pump-probe experiments. It also presents the opportunity for using this dependence to control the relative amplitude of nonresonant interactions in pump-probe signals such as that of solvent vibrations.

16.
J Phys Chem B ; 121(10): 2319-2325, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28230358

RESUMEN

Ultrafast photochemistry of pharaonis halorhodopsin (p-HR) in the intact membrane of Natronomonas pharaonis has been studied by photoselective femtosecond pump-hyperspectral probe spectroscopy with high time resolution. Two variants of this sample were studied, one with wild-type retinal prosthetic groups and another after shifting the retinal absorption deep into the blue range by reducing the Schiff base linkage, and the results were compared to a previous study on detergent-solubilized p-HR. This comparison shows that retinal photoisomerization dynamics is identical in the membrane and in the solubilized sample. Selective photoexcitation of bacterioruberin, which is associated with the protein in the native membrane, in wild-type and reduced samples, demonstrates conclusively that unlike the carotenoids associated with some bacterial retinal proteins the carrotenoid in p-HR does not act as a light-harvesting antenna.


Asunto(s)
Carotenoides/efectos de la radiación , Halorrodopsinas/efectos de la radiación , Carotenoides/química , Membrana Celular/química , Halobacteriaceae , Halorrodopsinas/química , Luz , Fotoquímica , Retinaldehído/química , Retinaldehído/efectos de la radiación
17.
J Phys Chem A ; 121(9): 1962-1975, 2017 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-28182435

RESUMEN

Formation of benzene excimer following UV excitation of the neat liquid is monitored with femtosecond spectroscopy. A prompt rise component in excimer transient absorption, which contradicts the classical scenario of gradual reorientation and pairing of the excited monomers, is observed. Three-pulse experiments in which the population of evolving excimers is depleted by a secondary dump pulse demonstrate that the excimer absorption band is polarized along the interfragment axis. The experiments furthermore prove that the subsequent 4-fold increase in excimer absorption over ∼50 ps is primarily due to an increase in the transition dipole of pairs which are formed early on, and not to excited monomers forming excimers in a delayed fashion due to unfavorable initial geometry. Results are analyzed in light of recent studies of local structure in the liquid benzene combined with advanced electronic structure calculations. The prompt absorption rise is ascribed to excited states delocalized over nearby benzene molecules, which are sufficiently close and nearly parallel in the pure liquid. Such low-symmetry structures, which differ considerably from the optimized structures of isolated benzene dimer and solid benzene, are sufficiently abundant in liquid benzene. Electronic structure calculations confirm the orientation of transition dipoles of the excimers along the interparticle axis and demonstrate how slow refinement of the intermolecular geometry leads to a significant increase in the excimer absorption strength.

18.
J Am Chem Soc ; 138(38): 12401-7, 2016 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-27575402

RESUMEN

Primary photochemical events in the unusually thermostable proton pumping rhodopsin of Thermus thermophilus bacterium (TR) are reported for the first time. Internal conversion in this protein is shown to be significantly faster than in bacteriorhodopsin (BR), making it the most rapidly isomerizing microbial proton pump known. Internal conversion (IC) dynamics of TR and BR were recorded from room temperature to the verge of thermal denaturation at 70 °C and found to be totally independent of temperature in this range. This included the well documented multiexponential nature of IC in BR, suggesting that assignment of this to ground state structural inhomogeneity needs revision. TR photodynamics were also compared with that of the phylogenetically more similar proton pump Gloeobacter rhodopsin (GR). Despite this similarity GR has poor thermal stability, and the excited state decays significantly more slowly and exhibits very prominent stretched exponential behavior. Coherent torsional wave-packets induced by impulsive photoexcitation of TR and GR show marked resemblance to each other in frequency and amplitude and differ strikingly from similar signatures in pump-probe data of BR and other microbial retinal proteins. Possible correlations between IC rates and thermal stability and the promise of using torsional coherence signatures for understanding chromophore protein binding in microbial retinal proteins are discussed.


Asunto(s)
Bacteriorodopsinas/metabolismo , Procesos Fotoquímicos , Bombas de Protones/química , Thermus thermophilus/metabolismo , Bacteriorodopsinas/genética , Bombas de Protones/metabolismo , Temperatura , Thermus thermophilus/química
19.
J Phys Chem A ; 120(19): 2941-2, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27193089
20.
J Phys Chem A ; 120(19): 3088-97, 2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-26720008

RESUMEN

The effect of Cu impurities on the absorption cross section, the rate of hot exction thermalization, and on exciton recombination processes in InAs quantum dots was studied by femtosecond transient absorption. Our findings reveal dynamic spectral effects of an emergent impurity sub-band near the bottom of the conduction band. Previously hypothesized to explain static photophysical properties of this system, its presence is shown to shorten hot carrier relaxation. Partial redistribution of interband oscillator strength to sub-band levels reduces the band edge bleach per exciton progressively with the degree of doping, even though the total linear absorption cross section at the band edge remains unchanged. In contrast, no doping effects were detected on absorption cross sections high in the conduction band, as expected due to the relatively high density of sates of the undoped QDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...