Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
1.
Neurochem Res ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302596

RESUMEN

Hypothalamic inflammation underlies diet-induced obesity and diabetes in rodent models. While diet normalization largely allows for recovery from metabolic impairment, it remains unknown whether long-term hypothalamic inflammation induced by obesogenic diets is a reversible process. In this study, we aimed at determining sex specificity of hypothalamic neuroinflammation and gliosis in mice fed a fat- and sugar-rich diet, and their reversibility upon diet normalization. Mice were fed a 60%-fat diet complemented by a 20% sucrose drink (HFHSD) for 3 days or 24 weeks, followed by a third group that had their diet normalized for the last 8 weeks of the study (reverse diet group, RevD). We determined the expression of pro- and anti-inflammatory cytokines, and of the inflammatory cell markers IBA1, CD68, GFAP and EMR1 in the hypothalamus, and analyzed morphology of microglia (IBA-1+ cells) and astrocytes (GFAP+ cells) in the arcuate nucleus. After 3 days of HFHSD feeding, male mice showed over-expression of IL-13, IL-18, IFN-γ, CD68 and EMR1 and reduced expression of IL-10, while females showed increased IL-6 and IBA1 and reduced IL-13, compared to controls. After 24 weeks of HFHSD exposure, male mice showed a general depression in the expression of cytokines, with prominent reduction of TNF-α, IL-6 and IL-13, but increased TGF-ß, while female mice showed over-expression of IFN-γ and IL-18. Furthermore, both female and male mice showed some degree of gliosis after HFHSD feeding for 24 weeks. In mice of both sexes, diet normalization after prolonged HFHSD feeding resulted in partial neuroinflammation recovery in the hypothalamus, but gliosis was only recovered in females. In sum, HFHSD-fed mice display sex-specific inflammatory processes in the hypothalamus that are not fully reversible after diet normalization.

2.
Brain Behav Evol ; : 1-9, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39047702

RESUMEN

BACKGROUND: In the bestseller book "Why Zebras Don't Get Ulcers", Robert Sapolsky argues that animals do not suffer from stress-related diseases like humans because for them, stress is episodic, while humans in contrast suffer from chronic psychological stress. In particular, the idea that fish cannot experience psychological stress is still prevalent, partly due to the lack of a homologous brain area to the neocortex. However, emerging evidence suggests that teleosts can undergo psychological stress, defined as a subjective and perceptual experience of the stressor, and in recent years, the underlying mechanisms started to be unveiled. SUMMARY: The occurrence of cognitive appraisal in the assessment of stressors has been demonstrated in fish, indicating that the subjective evaluation of stimulus valence and salience, rather than absolute intrinsic characteristics of the stimulus itself, play a key role in the activation of the stress response. Moreover, individual biases (i.e., cognitive bias) in the cognitive appraisal of stimuli have also been described in fish, with some individuals consistently evaluating ambiguous stimuli as positive (aka optimists) whereas other individuals (aka pessimists) appraise them as negative. As a result, optimists and pessimists show consistent differences in stress reactivity and susceptibility/resilience to disease. Finally, social context has also been shown to modulate the response to aversive stimuli with the behavior of conspecifics either buffering or enhancing the response (i.e., social buffering vs. social contagion). KEY MESSAGES: Cognitive appraisal of stressors occurs in fish, implying that the stress response is modulated by a subjective and perceptual experience of the stressor. Moreover, interindividual consistent cognitive biases in the appraisal of stressors are also present in fish making some individuals more susceptible to stress-related diseases. Therefore, psychological stress has a health toll in fish, and psychologically stressed fish can potentially have ulcers.

3.
Polymers (Basel) ; 16(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000698

RESUMEN

Orthotic devices play an important role in medical treatment, addressing various pathologies and promoting patient recovery. Customization of orthoses to fit individual patient morphologies and needs is essential for optimal functionality and patient comfort. The advent of additive manufacturing has revolutionized the biomedical field, offering advantages such as cost reduction, increased personalization, and enhanced dimensional adaptability for orthotics manufacturing. This research focuses on the impact strength of nine polymeric materials printed by additive manufacturing, including an evaluation of the materials' performance under varying conditions comprising different printing directions (vertical and horizontal) and exposure to artificial sweat for different durations (0 days, 24 days, and 189 days). The results showed that Nylon 12 is good for short-term (24 days) immersion, with absorbed energies of 78 J and 64 J for the vertical and horizontal directions, whereas Polycarbonate (PC) is good for long-term immersion (189 days), with absorbed energies of 66 J and 78 J for the vertical and horizontal directions. Overall, the findings contribute to a better understanding of the suitability of these materials for biomedical applications, considering both short-term and long-term exposure to physiological and environmental conditions.

4.
Neurosci Biobehav Rev ; 163: 105780, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955311

RESUMEN

In this review, we consider the definitions and experimental approaches to emotional contagion and prosocial behaviour in mammals and explore their evolutionary conceptualisation for studying their occurrence in the evolutionarily divergent vertebrate group of ray-finned fish. We present evidence for a diverse set of fish phenotypes that meet definitional criteria for prosocial behaviour and emotional contagion and discuss conserved mechanisms that may account for some preserved social capacities in fish. Finally, we provide some considerations on how to address the question of interdependency between emotional contagion and prosocial response, highlighting the importance of recognition processes, decision-making systems, and ecological context for providing evolutionary explanations.


Asunto(s)
Conducta Animal , Evolución Biológica , Emociones , Peces , Conducta Social , Animales , Peces/fisiología , Emociones/fisiología , Conducta Animal/fisiología , Humanos
5.
Polymers (Basel) ; 16(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000723

RESUMEN

The study presented herein concerns the mechanical properties of two common polymers for potential biomedical applications, PLA and PETG, processed through fused filament fabrication (FFF)-Material Extrusion (ME). For the uniaxial tension tests carried out, two printing orientations-XY (Horizontal, H) and YZ (Vertical, V)-were considered according to the general principles for part positioning, coordinates, and orientation typically used in additive manufacturing (AM). In addition, six specimens were tested for each printing orientation and material, providing insights into mechanical properties such as Tensile Strength, Young's Modulus, and Ultimate Strain, suggesting the materials' potential for biomedical applications. The experimental results were then compared with correspondent mechanical properties obtained from the literature for other polymers like ASA, PC, PP, ULTEM 9085, Copolyester, and Nylon. Thereafter, fatigue resistance curves (S-N curves) for PLA and PETG, printed along 45°, were determined at room temperature for a load ratio, R, of 0.2. Scanning electron microscope observations revealed fibre arrangements, compression/adhesion between layers, and fracture zones, shedding light on the failure mechanisms involved in the fatigue crack propagation of such materials and giving design reference values for future applications. In addition, fractographic analyses of the fatigue fracture surfaces were carried out, as well as X-ray Computed Tomography (XCT) and Thermogravimetric (TGA)/Differential Scanning Calorimetric (DSC) tests.

6.
bioRxiv ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38659860

RESUMEN

Wolcott-Rallison Syndrome (WRS) is the most common cause of permanent neonatal diabetes mellitus among consanguineous families. The diabetes associated with WRS is non-autoimmune, insulin-requiring and associated with skeletal dysplasia and growth retardation. The therapeutic options for WRS patients rely on permanent insulin pumping or on invasive transplants of liver and pancreas. WRS has a well identified genetic cause: loss-of-function mutations in the gene coding for an endoplasmic reticulum kinase named PERK (protein kinase R-like ER kinase). Currently, WRS research is facilitated by cellular and rodent models with PERK ablation. While these models have unique strengths, cellular models incompletely replicate the organ/system-level complexity of WRS, and rodents have limited scalability for efficiently screening potential therapeutics. To address these challenges, we developed a new in vivo model of WRS by pharmacologically inhibiting PERK in zebrafish. This small vertebrate displays high fecundity, rapid development of organ systems and is amenable to highly efficient in vivo drug testing. PERK inhibition in zebrafish produced typical WRS phenotypes such as glucose dysregulation, skeletal defects, and impaired development. PERK inhibition in zebrafish also produced broad-spectrum WRS phenotypes such as impaired neuromuscular function, compromised cardiac function and muscular integrity. These results show that zebrafish holds potential as a versatile model to study WRS mechanisms and contribute to the identification of promising therapeutic options for WRS.

7.
Environ Pollut ; 347: 123778, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38499171

RESUMEN

This study reports the synthesis and characterization of a supramolecular composite comprised of carbon dots (CDots) embedded within net-poly[(α-cyclodextrin)-ν-(citric acid)] (α-CD/CA/CDots) for the removal and detection of toluene and xylene from aqueous media. The remarkable stability of CDots within the composite enables the preservation of photoluminescence properties for prolonged storage and extended UV-light irradiation. As demonstrated, following the adsorption of both organic compounds, the composite detected them in the aqueous medium due to a fluorescence quenching mechanism. Spectroscopic analyses reveal that the accessible Stern-Volmer quenching constants for toluene and xylene are KSVa = 15.4 M-1 and KSVa = 10.3 M-1, respectively. As a result, the α-CD/CA/CDots composite were sensitive to the tested volatile organic compounds (LODtoluene = 3.7 mg/L and LODxylene = 4.9 mg/L). Optimal conditions for toluene and xylene adsorption were found, allowing to achieve noticeable adsorption capabilities (qe(toluene) = 68.9 and qe(xylene) = 48.2 mg/g) and removal efficiencies exceeding 70%. Different characterization techniques confirmed the successful synthesis of the composite and elucidated the interaction mechanisms between the adsorbent and the tested compounds. In summary, the multifunctionality demonstrated by the α-CD/CA/CDots composite ranks it as an efficient and promising adsorbent and detection probe for this class of water contaminants.


Asunto(s)
Puntos Cuánticos , alfa-Ciclodextrinas , Tolueno , Xilenos/química , Carbono/química , Agua , Colorantes
8.
Chemphyschem ; 25(10): e202300959, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38409629

RESUMEN

The activity and product selectivity of electrocatalysts for reactions like the carbon dioxide reduction reaction (CO2RR) are intimately dependent on the catalyst's structure and composition. While engineering catalytic surfaces can improve performance, discovering the key sets of rational design principles remains challenging due to limitations in modeling catalyst stability under operating conditions. Herein, we perform first-principles density functional calculations adopting implicit solvation methods with potential control to study the influence of adsorbates and applied potential on the stability of different facets of model Cu electrocatalysts. Using coverage dependencies extracted from microkinetic models, we describe an approach for calculating potential and adsorbate-dependent contributions to surface energies under reaction conditions, where Wulff constructions are used to understand the morphological evolution of Cu electrocatalysts under CO2RR conditions. We identify that CO*, a key reaction intermediate, exhibits higher kinetically and thermodynamically accessible coverages on (100) relative to (111) facets, which can translate into an increased relative stabilization of the (100) facet during CO2RR. Our results support the known tendency for increased (111) faceting of Cu nanoparticles under more reducing conditions and that the relative increase in (100) faceting observed under CO2RR conditions is likely attributed to differences in CO* coverage between these facets.

9.
Cells ; 13(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38334639

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons, for which current treatment options are limited. Recent studies have shed light on the role of mitochondria in ALS pathogenesis, making them an attractive therapeutic intervention target. This review contains a very comprehensive critical description of the involvement of mitochondria and mitochondria-mediated mechanisms in ALS. The review covers several key areas related to mitochondria in ALS, including impaired mitochondrial function, mitochondrial bioenergetics, reactive oxygen species, metabolic processes and energy metabolism, mitochondrial dynamics, turnover, autophagy and mitophagy, impaired mitochondrial transport, and apoptosis. This review also highlights preclinical and clinical studies that have investigated various mitochondria-targeted therapies for ALS treatment. These include strategies to improve mitochondrial function, such as the use of dichloroacetate, ketogenic and high-fat diets, acetyl-carnitine, and mitochondria-targeted antioxidants. Additionally, antiapoptotic agents, like the mPTP-targeting agents minocycline and rasagiline, are discussed. The paper aims to contribute to the identification of effective mitochondria-targeted therapies for ALS treatment by synthesizing the current understanding of the role of mitochondria in ALS pathogenesis and reviewing potential convergent therapeutic interventions. The complex interplay between mitochondria and the pathogenic mechanisms of ALS holds promise for the development of novel treatment strategies to combat this devastating disease.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Mitocondrias/metabolismo , Neuronas Motoras/patología , Apoptosis
10.
Nanoscale ; 16(4): 1952-1970, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38175178

RESUMEN

The self-assembly and surface adsorption of glycerol monooleate (GMO) in n-dodecane are studied using a combination of experimental and molecular dynamics simulation techniques. The self-assembly of GMO to form reverse micelles, with and without added water, is studied using small-angle neutron scattering and simulations. A large-scale simulation is also used to investigate the self-assembly kinetics. GMO adsorption onto iron oxide is studied using depletion isotherms, neutron reflectometry, and simulations. The adsorbed amounts of GMO, and any added water, are determined experimentally, and the structures of the adsorbed films are investigated using reflectometry. Detailed fitting and analysis of the reflectometry measurements are presented, taking into account various factors such as surface roughness, and the presence of impurities. The reflectometry measurements are complemented by molecular dynamics simulations, and good consistency between both approaches is demonstrated by direct comparison of measured and simulated reflectivity and scattering length density profiles. The results of this analysis are that in dry systems, GMO adsorbs as self-assembled reverse micelles with some molecules adsorbing directly to the surface through the polar head groups, while in wet systems, the GMO is adsorbed onto a thin layer of water. Only at high surface coverage is some water trapped inside a reverse-micelle structure; at lower surface coverages, the GMO molecules associate primarily with the water layer, rather than self-assemble.

11.
Cureus ; 15(9): e46150, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37900469

RESUMEN

A splenic abscess (SA) following sleeve gastrectomy (SG) is a rare manifestation of a gastric leak (GL). The clinical findings include fever, abdominal pain, leukocytosis, and an elevated C-reactive protein. A computed tomography scan is diagnostic and can show signs of GL, or diffuse peritonitis. Treatment can either be non-operative (including large-spectrum antibiotics and percutaneous drainage) or surgical (including splenectomy). We present the case of a 41-year-old female patient with SA, with septic shock and diffuse peritonitis, successfully treated with a splenectomy three months post-SG.

12.
Cureus ; 15(7): e41343, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37546031

RESUMEN

BACKGROUND: Implant-based submuscular breast reconstruction (SBR) can be performed with the aid of acellular dermal matrices (ADM) for implant coverage on their inferolateral pole, aiming at providing a biological interface for hiding the implant and therefore reducing the risk of complications. The purpose of this study is to assess the long-term post-operative outcomes obtained using the SBR-specific Native® ADM (DECO med s.r.l., Marcon, Venice, Italy). METHODS: All cases of Native®-assisted immediate SBR performed at our institution between October 2016 and March 2020 were retrospectively analysed. Demographic and surgical data were collected, and post-operative outcomes, including minor and major complications, were evaluated. Particular attention was paid to complications emerging before and after patient discharge. Dependence analyses were performed to uncover statistically significant relationships between risk factors and reconstructive outcomes. RESULTS: Data on 100 patients were collected, for a total of 128 breasts. The mean age of the cohort was 49.5 years, the mean BMI was 23.4 kg/m2, and the mean follow-up was 24 months. Out of this, 14.1% of patients received pre-operative radiotherapy, while 16.4% underwent post-mastectomy radiotherapy. Breasts appeared to develop short-term minor complications more likely during hospitalisation (11.7% vs. 7.8%), while short-term major complications occurred more often after discharge (7.8% vs. 15.6%). The most frequent long-term complications were capsular contracture and contour defects (both 9.4%). Risk factors that showed a statistically significant relationship with complications were pre- and post-mastectomy radiotherapy and post-operative chemotherapy. CONCLUSIONS: The retrospective analysis showed results in line with clinical outcomes reported in the literature for the same reconstructive technique. The use of Native® ADM in SBR is safe and effective in the long term.

13.
Commun Biol ; 6(1): 633, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37308619

RESUMEN

Group living animals use social and asocial cues to predict the presence of reward or punishment in the environment through associative learning. The degree to which social and asocial learning share the same mechanisms is still a matter of debate. We have used a classical conditioning paradigm in zebrafish, in which a social (fish image) or an asocial (circle image) conditioned stimulus (CS) have been paired with an unconditioned stimulus (US=food), and we have used the expression of the immediate early gene c-fos to map the neural circuits associated with each learning type. Our results show that the learning performance is similar to social and asocial CSs. However, the brain regions activated in each learning type are distinct and a community analysis of brain network data reveals segregated functional submodules, which seem to be associated with different cognitive functions involved in the learning tasks. These results suggest that, despite localized differences in brain activity between social and asocial learning, they share a common learning module and social learning also recruits a specific social stimulus integration module. Therefore, our results support the occurrence of a common general-purpose learning module, that is differentially modulated by localized activation in social and asocial learning.


Asunto(s)
Aprendizaje , Pez Cebra , Animales , Encéfalo , Cognición , Condicionamiento Clásico
14.
Adv Healthc Mater ; 12(26): e2300828, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37312636

RESUMEN

Neural tissue-related illnesses have a high incidence and prevalence in society. Despite intensive research efforts to enhance the regeneration of neural cells into functional tissue, effective treatments are still unavailable. Here, a novel therapeutic approach based on vertically aligned carbon nanotube forests (VA-CNT forests) and periodic VA-CNT micropillars produced by thermal chemical vapor deposition is explored. In addition, honeycomb-like and flower-like morphologies are created. Initial viability testing reveals that NE-4C neural stem cells seeded on all morphologies survive and proliferate. In addition, free-standing VA-CNT forests and capillary-driven VA-CNT forests are created, with the latter demonstrating enhanced capacity to stimulate neuritogenesis and network formation under minimal differentiation medium conditions. This is attributed to the interaction between surface roughness and 3D-like morphology that mimics the native extracellular matrix, thus enhancing cellular attachment and communication. These findings provide a new avenue for the construction of electroresponsive scaffolds based on CNTs for neural tissue engineering.


Asunto(s)
Nanotubos de Carbono , Células-Madre Neurales , Nanotubos de Carbono/química , Ingeniería de Tejidos , Diferenciación Celular
15.
Nanoscale Adv ; 5(13): 3428-3438, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37383075

RESUMEN

The energy efficiency of buildings can be significantly improved through the use of renewable energy sources. Luminescent solar concentrators (LSCs) appear to be a solution for integrating photovoltaic (PV) devices into the structure of buildings (windows, for instance) to enable low-voltage devices to be powered. Here, we present transparent planar and cylindrical LSCs based on carbon dots in an aqueous solution and dispersed in organic-inorganic hybrid matrices, which present photoluminescent quantum yield values up to 82%, facilitating an effective solar photon conversion. These LSCs showed the potencial for being incorporated as building windows due to an average light transmittance of up to ∼91% and color rendering index of up to 97, with optical and power conversion efficiency values of 5.4 ± 0.1% and 0.18 ± 0.01%, respectively. In addition, the fabricated devices showed temperature sensing ability enabling the fabrication of an autonomous power mobile temperature sensor. Two independent thermometric parameters were established based on the emission and the electrical power generated by the LSC-PV system, which could both be accessed by a mobile phone, enabling mobile optical sensing through multiparametric thermal reading with relative sensitivity values up to 1.0% °C-1, making real-time mobile temperature sensing accessible to all users.

16.
Ecancermedicalscience ; 17: 1544, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377686

RESUMEN

Recent advances in biomarker-driven therapies have changed the landscape of unresectable metastatic colorectal cancer (mCRC) and brought not only access issues but also difficulties for the treating physician (especially generalist oncologists) in choosing the most suitable treatment for each individual patient. This manuscript proposes an algorithm developed by The Brazilian Group of Gastrointestinal Tumours with the aim of bringing easy-to-follow steps in the management of unresectable mCRC. The algorithm is based on evidence for fit patients to facilitate therapeutic decisions in the clinical practice and assumes that there are no access and resource limitations.

17.
Mol Autism ; 14(1): 23, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391856

RESUMEN

BACKGROUND: Animal models enable targeting autism-associated genes, such as the shank3 gene, to assess their impact on behavioural phenotypes. However, this is often limited to simple behaviours relevant for social interaction. Social contagion is a complex phenotype forming the basis of human empathic behaviour and involves attention to the behaviour of others for recognizing and sharing their emotional or affective state. Thus, it is a form of social communication, which constitutes the most common developmental impairment across autism spectrum disorders (ASD). METHODS: Here we describe the development of a zebrafish model that identifies the neurocognitive mechanisms by which shank3 mutation drives deficits in social contagion. We used a CRISPR-Cas9 technique to generate mutations to the shank3a gene, a zebrafish paralogue found to present greater orthology and functional conservation relative to the human gene. Mutants were first compared to wild types during a two-phase protocol that involves the observation of two conflicting states, distress and neutral, and the later recall and discrimination of others when no longer presenting such differences. Then, the whole-brain expression of different neuroplasticity markers was compared between genotypes and their contribution to cluster-specific phenotypic variation was assessed. RESULTS: The shank3 mutation markedly reduced social contagion via deficits in attention contributing to difficulties in recognising affective states. Also, the mutation changed the expression of neuronal plasticity genes. However, only downregulated neuroligins clustered with shank3a expression under a combined synaptogenesis component that contributed specifically to variation in attention. LIMITATIONS: While zebrafish are extremely useful in identifying the role of shank3 mutations to composite social behaviour, they are unlikely to represent the full complexity of socio-cognitive and communication deficits presented by human ASD pathology. Moreover, zebrafish cannot represent the scaling up of these deficits to higher-order empathic and prosocial phenotypes seen in humans. CONCLUSIONS: We demonstrate a causal link between the zebrafish orthologue of an ASD-associated gene and the attentional control of affect recognition and consequent social contagion. This models autistic affect-communication pathology in zebrafish and reveals a genetic attention-deficit mechanism, addressing the ongoing debate for such mechanisms accounting for emotion recognition difficulties in autistic individuals.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Proteínas del Tejido Nervioso , Proteínas de Pez Cebra , Animales , Humanos , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Encéfalo , Genotipo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas del Tejido Nervioso/genética
18.
Anim Cogn ; 26(4): 1307-1318, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37184741

RESUMEN

The alarm substance in fish is a pheromone released by injured individuals after a predator attack. When detected by other fish, it triggers fear/defensive responses, such as freezing and erratic movement behaviours. Such responses can also help other fish in the shoal to modulate their own behaviours: decreasing a fear response if conspecifics have not detected the alarm substance (social buffering) or triggering a fear response if conspecifics detected the alarm substance (social contagion). Response variation to these social phenomena is likely to depend on sex. Because males have higher-risk life-history strategies than females, they may respond more to social buffering where they risk not responding to a real predator attack, while females should respond more to social contagion because they only risk responding to a false alarm. Using zebrafish, we explored how the response of males and females to the presence/absence of the alarm substance is modified by the alarmed/unalarmed behaviour of an adjacent shoal of conspecifics. We found that, in social buffering, males decreased freezing more than females as expected, but in social contagion males also responded more than females by freezing at a higher intensity. Males were, therefore, more sensitive to visual information, while females responded more to the alarm substance itself. Because visual information updates faster than chemical information, males took more risks but potentially more benefits as well, because a quicker adjustment of a fear response allows to save energy to other activities. These sex differences provide insight into the modifying effect of life-history strategies on the use of social information.


Asunto(s)
Caracteres Sexuales , Pez Cebra , Animales , Femenino , Masculino , Pez Cebra/fisiología , Conducta Animal/fisiología , Movimiento , Feromonas/farmacología
19.
Materials (Basel) ; 16(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37241263

RESUMEN

The nickel-titanium (NiTi) instruments' geometry plays an important role in their performance and behavior. The present assessment intends to validate and test the applicability of a 3D surface scanning method using a high-resolution laboratory-based optical scanner to create reliable virtual models of NiTi instruments. Sixteen instruments were scanned using a 12-megapixel optical 3D scanner, and methodological validation was performed by comparing quantitative and qualitative measurements of specific dimensions and identifying some geometric features of the 3D models with images obtained through scanning electron microscopy. Additionally, the reproducibility of the method was assessed by calculating 2D and 3D parameters of three different instruments twice. The quality of the 3D models created by two different optical scanners and a micro-CT device was compared. The 3D surface scanning method using the high-resolution laboratory-based optical scanner allowed for the creation of reliable and precise virtual models of different NiTi instruments with discrepancies varying from 0.0002 to 0.0182 mm. The reproducibility of measurements performed with this method was high, and the acquired virtual models were adequate for use in in silico experiments, as well as for commercial or educational purposes. The quality of the 3D model obtained using the high-resolution optical scanner was superior to that acquired by micro-CT technology. The ability to superimpose virtual models of scanned instruments and apply them in Finite Element Analysis and educational purposes was also demonstrated.

20.
J Neuroendocrinol ; 35(9): e13280, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37165563

RESUMEN

The fitness benefits of social life depend on the ability of animals to affiliate with others and form groups, on dominance hierarchies within groups that determine resource distribution, and on cognitive capacities for recognition, learning and information transfer. The evolution of these phenotypes is coupled with that of neuroendocrine mechanisms, but the causal link between the two remains underexplored. Growing evidence from our research group and others demonstrates that the tools available in zebrafish, Danio rerio, can markedly facilitate progress in this field. Here, we review this evidence and provide a synthesis of the state-of-the-art in this model system. We discuss the involvement of generalized motivation and cognitive components, neuroplasticity and functional connectivity across social decision-making brain areas, and how these are modulated chiefly by the oxytocin-vasopressin neuroendocrine system, but also by reward-pathway monoamine signaling and the effects of sex-hormones and stress physiology.


Asunto(s)
Neuroendocrinología , Pez Cebra , Animales , Encéfalo , Motivación , Oxitocina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA