Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 4(18): 17874-17879, 2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31681896

RESUMEN

In this study, a 3D reactive flow simulation model is built to simulate the leakage processes though assumed leakage channels. The geochemical reactions are coupled with fluid flow simulation in this model with consideration of reservoir minerals calcite, kaolinite, and anorthite. As an essential trigger for geochemical reactions, changes in pH value are investigated during and after the CO2 injection process. By comparing CO2 migration with/without geochemical reactions, the influence of geochemical processes on CO2 leakage is illustrated. The leakage behaviors through leakage channels with different permeabilities are evaluated. Influence of reservoir temperature on CO2 leakage is also exhibited. Furthermore, the effects of the distance between the injection well and leakage zone on the leakage potential are studied. The results indicate that the geochemical reactions have impact on the leakage processes, which can decrease the leakage level with the presence of geochemical reactions. The region of low pH enlarges with continuous injection of CO2. Hence, monitoring changes in pH can reflect the migration of CO2, which can provide an alert for CO2 leakage. The occurrence of the leakage phenomenon is postponed with increasing the distance between the CO2 injection well and the leakage channel. However, the leakage level tends to be consistent with injecting more CO2. The CO2 leakage risk can be reduced through the leakage channels with lower permeability. With the presence of higher reservoir temperatures, the leakage risk can be improved. These results can provide references for the application of monitoring methods and prediction of CO2 front associated with geochemical processes.

2.
J Sci Comput ; 74(1): 396-411, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29430078

RESUMEN

An efficient nonlinear multigrid method for a mixed finite element method of the Darcy-Forchheimer model is constructed in this paper. A Peaceman-Rachford type iteration is used as a smoother to decouple the nonlinearity from the divergence constraint. The nonlinear equation can be solved element-wise with a closed formulae. The linear saddle point system for the constraint is reduced into a symmetric positive definite system of Poisson type. Furthermore an empirical choice of the parameter used in the splitting is proposed and the resulting multigrid method is robust to the so-called Forchheimer number which controls the strength of the nonlinearity. By comparing the number of iterations and CPU time of different solvers in several numerical experiments, our multigrid method is shown to convergent with a rate independent of the mesh size and the Forchheimer number and with a nearly linear computational cost.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...