Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Foods ; 12(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37444179

RESUMEN

This study aimed to evaluate the changes in Agaricus bisporus (white and brown) characteristics (colour and acidity parameters, lactic acid bacteria (LAB) and mould/yeast counts, biogenic amine content, fatty acid (FA) and volatile compound (VC) profiles, overall acceptability, and emotions induced for consumers) during a 48 h lactic acid fermentation with Lacticaseibacillus casei No. 210, Lactiplantibacillus plantarum No. 135, Lacticaseibacillus paracasei No. 244, and Pediococcus acidilactici No. 29 strains. Fermented white and brown A. bisporus showed higher LAB count and lower pH, lightness, redness, and yellowness than non-fermented ones. Yeast and fungi counts were similar between non-fermented and fermented samples. All samples contained spermidine (on average, 191.5 mg/kg) and some of the fermented samples had tyramine (on average, 80.7 mg/kg). Saturated FA was the highest in non-fermented brown A. bisporus. The highest monounsaturated and polyunsaturated FA contents were found in Lp. plantarum No. 135 fermented white and brown A. bisporus, respectively. For the first time, the VC profile of fermented A. bisporus was analysed. 1-Octen-3-ol content significantly decreased while benzyl alcohol, acetoin, and 2,3-butanediol increased in most fermented samples. Fermented A. bisporus received good acceptability scores. The emotional evaluation showed that the LAB strain and the interaction of the LAB strain and A. bisporus variety were significant on the intensity of emotions "happy" and "sad", while all analysed factors and their interactions were significant on the intensity of "angry" and "disgusted" (p ≤ 0.05). The findings of this study show the potential of the selected LAB strains and contribute to the increasing body of research on fermented mushrooms.

2.
Front Nutr ; 10: 1118710, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37125035

RESUMEN

The aim of this study was to evaluate the influence of lactic acid bacteria (LAB) strains (Lactiplantibacillus plantarum No.122 and Lacticaseibacillus casei No.210) and milling process on the solid-state fermented (for 24 h, at 30°C) green and red lentils (Lens culinaris L.) properties, chiefly pH, LAB viable counts, color coordinates, free amino acid (FAA) profile, γ-aminobutyric acid (GABA) and biogenic amine (BA) concentrations, fatty acid (FA) and volatile compound (VC) profiles. Results showed that both of the tested LAB strains are suitable for the fermentation of lentils: pH of fermented lentils was <4.5 and LAB viable counts >8.0 log10 colony-forming units (CFU)/g. A very strong negative correlation was found (r = -0.973, p ≤ 0.0001) between LAB counts and pH of the samples. Also, fermentation and milling process were significant factors toward color coordinates of the lentils. In most of the cases, solid-state fermentation (SSF) increased essential FAA content in lentils; however, some of the non-essential FAA content was reduced. SSF significantly increased GABA concentration in lentils and milling process was a significant factor on GABA content of the samples (p ≤ 0.05). The main BA in lentils was spermidine, and SSF decreased their total BA content (34.8% on average in red lentils and 39.9% on average in green lentils). The main FA in lentils were linoleic and oleic. The main VC in lentils were hexanal, 1-hexanol, hexanoic acid, D-limonene and (E)-2-nonen-1-ol. Furthermore, most of the VC showed significant correlations with pH of lentil samples, LAB counts and FA content. Finally, the LAB strain used for fermentation and the milling process of lentils are significant factors for most of the analyzed parameters in lentil. Moreover, despite the higher GABA concentration found in green non-milled SSF lentils, application of combined milling and SSF is recommended because they showed the lowest BA content in addition to higher essential FAA and GABA concentrations.

3.
Biology (Basel) ; 12(2)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36829524

RESUMEN

The aim of this study was to investigate the changes in bioactive compounds (L-glutamic acid (L-Glu), gamma-aminobutyric acid (GABA) and biogenic amines (BAs)) during the submerged (SMF) and solid-state (SSF) fermentation of Spirulina with lactobacilli strains (Lacticaseibacillus paracasei No. 244; Levilactobacillus brevis No. 173; Leuconostoc mesenteroides No. 225; Liquorilactobacillus uvarum No. 245). The antimicrobial properties of the untreated and fermented Spirulina against a variety of pathogenic and opportunistic strains were tested. The highest concentrations of L-Glu (3841 mg/kg) and GABA (2396 mg/kg) were found after 48 h of SSF with No. 173 and No. 244 strains, respectively. The LAB strain used for biotreatment and the process conditions, as well as the interaction of these factors, had statistically significant effects on the GABA concentration in Spirulina (p ≤ 0.001, p = 0.019 and p = 0.011, respectively). In all cases, the SSF of Spirulina had a higher total BA content than SMF. Most of the fermented Spirulina showed exceptional antimicrobial activity against Staphylococcus aureus but not against the other pathogenic bacteria. The ratios of BA/GABA and BA/L-Glu ranged from 0.5 to 62 and from 0.31 to 10.7, respectively. The GABA content was correlated with putrescine, cadaverine, histamine, tyramine, spermidine and spermine contents. The L-glutamic acid concentration showed positive moderate correlations with tryptamine, putrescine, spermidine and spermine. To summarize, while high concentrations of desirable compounds are formed during fermentation, the formation of non-desirable compounds (BAs) must also be considered due to the similar mechanism of their synthesis as well as the possibility of obtaining high concentrations in the end products.

4.
Microorganisms ; 11(2)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36838408

RESUMEN

This study aimed at evaluating changes of microalgae Spirulina during its fermentation with Lactiplantibacillus plantarum No. 122 strain, and further at incorporating Spirulina bio-converted for nutraceuticals rich in L-glutamic (L-Glu) and gamma-aminobutyric acids (GABA) into sucrose-free chewing candy (gummy) preparations. Fermented Spirulina had higher b* (yellowness) coordinates than untreated (non-fermented), and fermentation duration (24 and 48 h) had a statistically significant effect on colour coordinates. The highest contents of L-glutamic and gamma-aminobutyric acids (4062 and 228.6 mg/kg, respectively) were found in 24 and 48 h-fermented Spirulina, respectively. Fermentation increased the content of saturated fatty acids and omega-3 in Spirulina, while monounsaturated fatty acids and omega-6 were reduced. The addition of fermented Spirulina (FSp) significantly affected hardness, decreased lightness and yellowness, and increased the greenness of chewing candies. All chewing candy samples (with xylitol) prepared with 3 and 5 g of FSp and 0.2 µL of Citrus paradise essential oil received the highest scores for overall acceptability, and the highest intensity (0.052) of emotion "happy" was elicited by the sample group containing xylitol, agar, ascorbic acid, 3 g of FSp, and 0.1 µL of Mentha spicata essential oil. As an outcome of this research, one may conclude that fermented Spirulina has significant potential as an innovative ingredient in the production of healthier sucrose-free nutraceutical chewing candies.

5.
Toxins (Basel) ; 15(1)2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36668894

RESUMEN

The aim of this study was to select a lactic acid bacteria (LAB) strain for bio-conversion of Spirulina, a cyanobacteria ("blue-green algae"), into an ingredient with a high concentration of gamma-aminobutyric acid (GABA) for human and animal nutrition. For this purpose, ten different LAB strains and two different fermentation conditions (SMF (submerged) and SSF (solid state fermentation)) were tested. In addition, the concentrations of fatty acids (FA) and biogenic amines (BA) in Spirulina samples were evaluated. It was established that Spirulina is a suitable substrate for fermentation, and the lowest pH value (4.10) was obtained in the 48 h SSF with Levilactobacillus brevis. The main FA in Spirulina were methyl palmitate, methyl linoleate and gamma-linolenic acid methyl ester. Fermentation conditions were a key factor toward glutamic acid concentration in Spirulina, and the highest concentration of GABA (2395.9 mg/kg) was found in 48 h SSF with Lacticaseibacillus paracasei samples. However, a significant correlation was found between BA and GABA concentrations, and the main BA in fermented Spirulina samples were putrescine and spermidine. Finally, the samples in which the highest GABA concentrations were found also displayed the highest content of BA. For this reason, not only the concentration of functional compounds in the end-product must be controlled, but also non-desirable substances, because both of these compounds are produced through similar metabolic pathways of the decarboxylation of amino acids.


Asunto(s)
Lactobacillales , Levilactobacillus brevis , Spirulina , Animales , Humanos , Fermentación , Aminoácidos/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Lactobacillales/metabolismo , Aminas Biogénicas
6.
Plants (Basel) ; 11(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36432808

RESUMEN

The aim of this study was to apply the combined thermomechanical-biological treatment for corn processing by-product (CPBP) valorization to added-value food and feed material. The mechanical-thermal pre-treatment was performed by applying the extrusion technique. Extruded CPBPs (14, 16, and 18% moisture) were further biodegraded with Lactiplantibacillus plantarum-LUHS122 (Lpl), Liquorilactobacillus uvarum-LUHS245 (Lu), Lacticaseibacillus casei-LUHS210 (Lc), and Lacticaseibacillus paracasei-LUHS244 (Lpa). Acidity parameters, microbial characteristics, sugars concentration, amino and fatty acids profile, biogenic amines (BA), and antibacterial and antifungal properties of CPBP were analyzed. Fermented CPBP had a reduced count of mould/yeast. A significantly lower (p ≤ 0.05) count of total enterobacteria was found in most of the extruded-fermented CPBP. Fermentation of extruded CPBP (moisture of 16 and 18%) increased valine and methionine content. Cadaverine and spermidine were not found after treatment of CPBP, and the lowest content of BA was found in the extruded-fermented (Lpa, moisture 18%) CPBP. Applied treatment had a significant effect on most of the fatty acids. CPBP fermented with Lpl, Lu, and Lpa displayed inhibition properties against 3 of the 10 tested pathogenic/opportunistic bacterial strains. Extruded-fermented (Lu, Lc, and Lpa moisture of 14 and 18%) CPBP showed antifungal activity against Rhizopus. Extruded-fermented (14% moisture, Lpl) CPBP inhibited Rhizopus and Aspergillus fumigatus. In conclusion, combined treatment can improve certain parameters and properties of CPBP in order to produce safer and more nutritious ingredients for food and feed industries.

7.
Front Nutr ; 9: 990274, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091232

RESUMEN

Algal biomass (AB) is prospective source of valuable compounds, however, Baltic Sea macroalgae have some challenges, because of their high microbial and chemical contamination. These problems can be solved, by using appropriate technologies for AG pre-treatment. The aim of this study was to evaluate the influence of two pre-treatments, solid-state fermentation with the Lactiplantibacillus plantarum LUHS135 and ultrasonication, on the antioxidant and antimicrobial characteristics of macro- (Cladophora rupestris, Cladophora glomerata, Furcellaria lumbricalis, Ulva intestinalis) and Spirulina (Arthrospira platensis) extracts. Also, combinations of extracts and LUHS135 were developed and their characteristics were evaluated. The total phenolic compound content was determined from the calibration curve and expressed in mg of gallic acid equivalents; antioxidant activity was measured by a Trolox equivalent antioxidant capacity assay using the DPPH• (1,1-diphenyl-2-picrylhydrazyl), ABTS•+ 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid), FRAP (Ferric Reducing Ability of Plasma) discoloration methods. Antimicrobial activity was measured by using agar well diffusion assay and in a liquid medium. The highest DPPH• and ABTS•+ was shown by C.rupestris and F.lumbricalis extract × LUHS135 combinations, the highest FRAP - by non-pretreated C.rupestris and F.lumbricalis extract × LUHS135 combinations. Ultrasonicated samples inhibited four out of seven tested pathogens. Finally, the tested pre-treatments showed good perspectives and can be recommended for AB valorization.

8.
Foods ; 11(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35954083

RESUMEN

Nowadays, there are many sorts of beer, however, some of them, despite the good sensory and other quality indicators, could contain high concentrations of undesirable compounds, such biogenic amines (BA). The yeast strain (YS), used for fermentation, can cause desirable as well as undesirable changes in beer. The aim of this study was to evaluate the contribution of different YS (A-Saccharomyces cerevisiae var. diastaticus, B-Saccharomyces cerevisiae var. bayanus, C-Brettanomyces claussenii) on the main quality parameters of beer. In addition, the BA concentration and the volatile compounds (VC, measured by gas chromatography-mass spectrometry) and their relation with beer overall acceptability (OA, evaluated by 20 trained judges) and emotions induced for consumers were analysed. The YS was a significant factor on alcohol formation in beer (p = 0.0001). The highest colour intensity was shown by C beer (10.2 EBC), and the latter beer showed the lowest OA. All of the beer samples induced the highest intensity of the emotion "neutral", and the main VC of the beer were 3-methyl-1-butanol; L-α-terpineol; hexanoic acid 3-methylbutyl ester; and n-capric acid isobutyl ester. The highest total BAs content was found in beer fermented with C. Finally, all of the tested YS are suitable for beer production, however, taking into consideration the safety aspect of the beer, it should be mentioned that the highest concentration of BAs was found in beer fermented with C strain.

9.
Foods ; 10(10)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34681550

RESUMEN

The aim of this study was to evaluate the contribution of extruded and fermented wheat bran (WBex-f) to the quality of wheat bread (BR), including the volatile compounds (VC) profile and VC relationship with emotions induced for consumers. A comparison study of BR (prepared with 5%, 10%, and 15% untreated wheat bran (nWB) and WBex-f) quality parameters was performed. It was established that nWB increases dough hardness and reduces BR specific volume. The addition of 5% and 10% of WBex-f was not significant on BR porosity and led to the formation of a high number of large pores. nWB and WBex-f increases the mass loss of BR after baking (by 13.38%), and the control breads showed the highest crust darkness, yellowness, and redness. nWB and WBex-f reduces BR firmness during storage, and WBex-f increases the overall acceptability (OA) of BR (by 26.2%). A strong positive correlation was found between OA and the emotion 'happy' (r = 0.8696). In BR prepared with WBex-f, a higher content of pyrazine, methyl-; pyrazine, 2-ethyl-; pyrazine, 2-ethyl-6-methyl-; furfural; ethanone, 1-(2-furanyl)-; benzaldehyde; and 3-furanmethanol was found. Finally, it can be stated that WBex-f could prolong the shelf life of BR and leads to the formation of a specific VC profile, which is associated with a higher OA of the product.

10.
Foods ; 10(9)2021 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-34574335

RESUMEN

The aim of this study was to evaluate the characteristics of macroalgae (Cladophora rupestris, Furcellaria lumbricalis, Ulva intestinalis) and microalgae (Arthrospira platensis (Sp1, Sp2), Chlorella vulgaris) extracts, including micro- and macroelement transition to extract, antioxidant, antimicrobial properties, the concentrations of chlorophyll (-a, -b), and the total carotenoid concentration (TCC). In macroalgae, the highest TCC and chlorophyll content were found in C. rupestris. In microalgae, the TCC was 10.1-times higher in C. vulgaris than in Sp1, Sp2; however, the chlorophyll contents in C. vulgaris samples were lower. A moderate negative correlation was found between the chlorophyll-a and TCC contents (r = -0.4644). In macroalgae extract samples, C. rupestris and F. lumbricalis showed the highest total phenolic compound content (TPCC). DPPH antioxidant activity and TPCC in microalgae was related to the TCC (r = 0.6191, r = 0.6439, respectively). Sp2 extracts inhibited Staphylococcus haemolyticus; C. rupestris, F. lumbricalis, U. intestinalis, and Sp2 extracts inhibited Bacillus subtilis; and U. intestinalis extracts inhibited Streptococcus mutans strains. This study showed that extraction is a suitable technology for toxic metal decontamination in algae; however, some of the desirable microelements are reduced during the extraction, and only the final products, could be applied in food, feed, and others.

11.
Foods ; 10(4)2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33916334

RESUMEN

The aim of this study was to develop nutraceutical chewing candy (CCN) formulations based on fermented milk permeate (MP) (source of galactooligosaccharides (GOS) and viable lactic acid bacteria (LAB)), psyllium husk (source of desirable hydrocolloids), and apple by-products (source of phenolic compounds). For CCN preparation, gelatin (Gel) and agar were tested; also, to provide CCN prepared using agar with a desirable hard texture, citric acid (cit) was changed to ascorbic acid. To select the optimal quantities of the ingredients, overall acceptability (OA) and emotions (EMs) induced in consumers by different CCN formulations were evaluated. Furthermore, viable LAB count during storage, texture, colour, and antioxidant characteristics were analysed. The highest OA (score 8.5) was shown for samples consisting of MP, psyllium husk (Ph), apple by-products (App), cit and xylitol (Xy); a very strong correlation was found between OA and the EM "happy" (r = 0.907**). After 14 days of storage, Gel+MP+Ph+App+cit samples showed a LAB count higher than 6.0 log10 CFU g-1; however, better antioxidant properties were found for the CCN prepared with agar. Finally, it can be stated that fermented MP, Ph, and App can be used for preparation of added-value CCN in a sustainable manner, and the recommended formulation is Gel+ MP+Ph+App+cit+Xy.

12.
Microorganisms ; 8(8)2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32756465

RESUMEN

The present research study aims to prepare prototypes of beverages from milk permeate (MP) using fermentation with 10 different strains of lactic acid bacteria (LAB) showing antimicrobial properties (L. uvarum LUHS245, L. casei LUHS210, L. curvatus LUHS51, L. plantarum LUHS135, P. acidilactici LUHS29, L. plantarum LUHS122, L. coryniformins LUHS71, L. paracasei LUHS244, P. pentosaceus LUHS183, L. faraginis LUHS206) and MP with (AppMP) or without (MP) the addition of 8% (w/w) apple by-products (App). Two groups of prototypes of beverages were prepared: fermented MP and fermented MP with App (AppMP). Acidity parameters, LAB viable counts, lactose and galactooligosaccharides (GOSs) content, antimicrobial properties against 15 pathogenic and opportunistic bacterial strains, overall acceptability and emotions induced of the final fermented beverages for consumers were evaluated. Results showed that all LAB grew well in MP and LAB strain exhibited a significant (p ≤ 0.05) influence on galactobiose and galactotriose synthesis in the fermentable MP substrate. The highest total content of GOS (26.80 mg/100 mL) was found in MPLUHS29 fermented beverage. In addition, MPLUHS245, MPLUHS210 and AppMPLUHS71 fermented beverages showed high antimicrobial activity, inhibiting 13 out of 15 tested microbial pathogens. The overall acceptability of AppMP fermented beverages was 26.8% higher when compared with fermented beverages without App (MP), and the most intensive "happy" emotion was induced by MPLUHS71, MPLUHS24, MPLUHS183 and MPLUHS206 samples. Finally, very promising results were also attained by the bioconversion of MP with selected LAB and App addition into the prototypes of antimicrobial beverages enriched with GOS.

13.
Food Sci Nutr ; 8(1): 340-350, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31993160

RESUMEN

In this study, changes of bioactive compounds (crude protein (CP), crude fat (CF), dietary fiber (DF), fatty acids (FAs), free amino acids (FAAs), phenolic compounds (PCs), biogenic amines (BAs), lignans, and alkylresorcinols) in barley industry by-products (BB) during submerged and solid state fermentation (SSF) with Pediococcus acidilactici were analyzed. It was established that both fermentation conditions reduce the CP and CF content in BB (by 25.8% and 35.9%, respectively) and increase DF content (on average by 25.0%). Fermentation increases the oleic, arachidic, eicosadienoic, behenic, and lignoceric FA in BB samples. The highest total BA content was found in untreated samples (290.6 mg/kg). Solid state fermentation increased the content of the alkylresorcinol C19:0. Finally, collecting data about the changes of these compounds during technological processes is very important, because according to the specific compounds formed during fermentation, further recommendations for by-product valorization and uses in food, pharmaceutical, or feed industries can be suggested.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA