RESUMEN
In a scenario of accelerated global climate change, the continuous growth of the world population, and the excessive use of chemical fertiliser, the search for sustainable alternatives for agricultural production is crucial. The present study was conducted to evaluate the plant growth-promoting (PGP) characteristics of two yeast strains, Candida guilliermondii and Rhodotorula mucilaginosa, and the physicochemical characteristics of nanometric capsules and iron oxide nanoparticles (Fe2O3-NPs) for the formulation of nanobiofertilisers. The physiological and productive effects were evaluated in a greenhouse assay using lettuce plants. The results showed that C. guilliermondii exhibited higher tricalcium phosphate solubilisation capacity, and R. mucilaginosa had a greater indole-3-acetic acid (IAA) content. The encapsulation of C. guilliermondii in sodium alginate capsules significantly improved the growth, stomatal conductance, and photosynthetic rate of the lettuce plants. Physicochemical characterisation of the Fe2O3-NPs revealed a particle size of 304.1 nm and a negative Z-potential, which indicated their stability and suitability for agricultural applications. The incorporation of Fe2O3-NPs into the capsules was confirmed by SEM-EDX analysis, which showed the presence of Fe as the main element. In summary, this study highlights the potential of nanobiofertilisers containing yeast strains encapsulated in sodium alginate with Fe2O3-NPs to improve plant growth and photosynthetic efficiency as a path toward more sustainable agriculture.
RESUMEN
Rosehip fruits, characterized by their high concentrations of bioactive compounds and antioxidant activity (AA), have been traditionally used to make jams, infusions, and juices. Thus, the objective of this research was to evaluate the stability of rosehip juice by determining the concentrations of bioactive compounds and total phenols and the AA using chromatographic and spectroscopic methods. The stability of the juice was evaluated with three treatments and different storage conditions, namely, unpasteurized-refrigerated, pasteurized-room temperature, and pasteurized-refrigerated, and measurements were taken for eight months. Individual and total phenolic compounds, evaluated by chromatographic methods, reported differences until the end of this study. The total phenolic compounds by Folin-Ciocalteu method presented an average decrease of 57% in the three treatments in relation to the initial conditions. On the other hand, the ascorbic acid content decreased considerably, disappearing at week six. Furthermore, for the unpasteurized-refrigerated and pasteurized-refrigerated samples, a correlation was found between flavonols, total phenols, ascorbic acid, and antioxidant activity determined by the TEAC method. For the pasteurized-room temperature samples, correlations were found between the levels of several flavonols, hydroxycinnamic acid, total phenols, and ascorbic acid and the antioxidant activity determined by the CUPRAC method. The stability of the compounds was mainly correlated with the storage conditions of the juice and not with pasteurization. The highest stability was observed for the unpasteurized-refrigerated and pasteurized-refrigerated samples. Although the concentrations of the compounds evaluated decreased during this study, significant levels of AA persisted, providing beneficial characteristics for consumer health.
Asunto(s)
Antioxidantes , Jugos de Frutas y Vegetales , Fenoles , Rosa , Antioxidantes/química , Antioxidantes/análisis , Jugos de Frutas y Vegetales/análisis , Rosa/química , Fenoles/análisis , Fenoles/química , Ácido Ascórbico/análisis , Ácido Ascórbico/química , Fitoquímicos/química , Fitoquímicos/análisis , Frutas/química , Extractos Vegetales/química , Extractos Vegetales/análisisRESUMEN
Drought affects several plant physiological characteristics such as photosynthesis, carbon metabolism, and chlorophyll content, causing hormonal and nutritional imbalances and reducing nutrient uptake and transport, which inhibit growth and development. The use of bioinoculants based on plant growth-promoting microorganisms such as plant growth-promoting rhizobacteria (PGPR), yeasts, and arbuscular mycorrhizal fungi (AMF) has been proposed as an alternative to help plants tolerate drought. However, most studies have been based on the use of a single type of microorganism, while consortia studies have been scarcely performed. Therefore, the aim of this study was to evaluate different combinations of three PGPR, three AMF, and three yeasts with plant growth-promoting attributes to improve the biochemical, nutritional, and physiological behavior of strawberry plants growing under severe drought. The results showed that the growth and physiological attributes of the non-inoculated plants were significantly reduced by drought. In contrast, plants inoculated with the association of the fungus Claroideoglomus claroideum, the yeast Naganishia albida, and the rhizobacterium Burkholderia caledonica showed a stronger improvement in tolerance to drought. High biomass, relative water content, fruit number, photosynthetic rate, transpiration, stomatal conductance, quantum yield of photosystem II, N concentration, P concentration, K concentration, antioxidant activities, and chlorophyll contents were significantly improved in inoculated plants by up to 16.6%, 12.4%, 81.2%, 80%, 79.4%, 71.0%, 17.8%, 8.3%, 6.6%, 57.3%, 41%, and 22.5%, respectively, compared to stressed non-inoculated plants. Moreover, decreased malondialdehyde levels by up to 32% were registered. Our results demonstrate the feasibility of maximizing the effects of inoculation with beneficial rhizosphere microorganisms based on the prospect of more efficient combinations among different microbial groups, which is of interest to develop bioinoculants oriented to increase the growth of specific plant species in a global scenario of increasing drought stress.
RESUMEN
Aluminum (Al) toxicity and phosphorus (P) deficiency are widely recognized as major constraints to agricultural productivity in acidic soils. Under this scenario, the development of ryegrass plants with enhanced P use efficiency and Al resistance is a promising approach by which to maintain pasture production. In this study, we assessed the contribution of growth traits, P efficiency, organic acid anion (OA) exudation, and the expression of Al-responsive genes in improving tolerance to concurrent low-P and Al stress in ryegrass (Lolium perenne L.). Ryegrass plants were hydroponically grown under optimal (0.1 mM) or low-P (0.01 mM) conditions for 21 days, and further supplied with Al (0 and 0.2 mM) for 3 h, 24 h and 7 days. Accordingly, higher Al accumulation in the roots and lower Al translocation to the shoots were found in ryegrass exposed to both stresses. Aluminum toxicity and P limitation did not change the OA exudation pattern exhibited by roots. However, an improvement in the root growth traits and P accumulation was found, suggesting an enhancement in Al tolerance and P efficiency under combined Al and low-P stress. Al-responsive genes were highly upregulated by Al stress and P limitation, and also closely related to P utilization efficiency. Overall, our results provide evidence of the specific strategies used by ryegrass to co-adapt to multiple stresses in acid soils.
RESUMEN
Solanum tuberosum is one of the most widely cropped plant species worldwide; unfortunately, drought is one of the major constraints on potato productivity because it affects the physiology, biochemical processes, and yield. The use of arbuscular mycorrhizal fungi (AMF) has exhibited beneficial effects on plants during drought. The objective of this study was to analyse the effect of AMF inoculation on two genotypes of potato plants exposed to water stress, and the photosynthetic traits, enzymatic antioxidant activity, and exudation of low-molecular-weight organic acids (LMWOAs) of potato plants inoculated with two strains of AMF, Claroideoglomus claroideum (CC) and Claroideoglomus lamellosum (HMC26), were evaluated. Stomatal conductance exhibited a similar trend in the CC and HMC26 treatments for both potato genotypes; moreover, the photosynthetic rate significantly increased by 577.9% between the 100% soil humidity (S0) and 40% soil humidity (S2) stress levels for the VR808 genotype under the CC treatment. The activities of the enzymes catalase (CAT) and ascorbate peroxidase (APX) showed similar trends. In this study, there were different responses among genotypes and treatments. Inoculation with CC under S2 stress levels is a promising potential approach for improving potato growth under drought conditions.
RESUMEN
Lettuce is a vegetable that contributes vitamins, minerals, fibre, phenolic compounds and antioxidants to the human diet. In the search for improving production conditions and crop health, the use of microorganisms with plant growth-promoting capabilities, such as soil yeasts (PGPY), in conjunction with nanotechnology could offer sustainable development of agroecosystems. This study evaluated the synthesis of health-promoting bioactive compounds in lettuce under the application of soil yeast and an iron nanoparticle (NP-Fe2O3) encapsulated in alginate beads. Two yeast strains, Candida guillermondii and Rhodotorula mucilaginosa, and a consortium of both yeasts were used in the presence and absence of Fe2O3-NPs. Phenolic compounds were identified and quantified via HPLC-ESI-Q-ToF and antioxidant activity. Ten phenolic compounds were identified, highlighting the chicoric acid isomer and two quercetin glycosides with high concentrations of up to 100 µg g-1 in treatments with C. guillermondii. Treatments with R. mucilaginosa and NPs-Fe2O3 presented an increase in antioxidant activity, mainly in TEAC, CUPRAC and DPPH activities in leaves, with significant differences between treatments. Therefore, the use of encapsulated soil yeasts is a viable alternative for application in vegetables to improve the biosynthesis and accumulation of phenolic compounds in lettuce and other crops.
RESUMEN
Drought is a major challenge for agriculture worldwide, being one of the main causes of losses in plant production. Various studies reported that some soil's bacteria can improve plant tolerance to environmental stresses by the enhancement of water and nutrient uptake by plants. The Atacama Desert in Chile, the driest place on earth, harbors a largely unexplored microbial richness. This study aimed to evaluate the ability of various Bacillus sp. from the hyper arid Atacama Desert in the improvement in tolerance to drought stress in lettuce (Lactuca sativa L. var. capitata, cv. "Super Milanesa") plants. Seven strains of Bacillus spp. were isolated from the rhizosphere of the Chilean endemic plants Metharme lanata and Nolana jaffuelii, and then identified using the 16s rRNA gene. Indole acetic acid (IAA) production, phosphate solubilization, nitrogen fixation, and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity were assessed. Lettuce plants were inoculated with Bacillus spp. strains and subjected to two different irrigation conditions (95% and 45% of field capacity) and their biomass, net photosynthesis, relative water content, photosynthetic pigments, nitrogen and phosphorus uptake, oxidative damage, proline production, and phenolic compounds were evaluated. The results indicated that plants inoculated with B. atrophaeus, B. ginsengihumi, and B. tequilensis demonstrated the highest growth under drought conditions compared to non-inoculated plants. Treatments increased biomass production and were strongly associated with enhanced N-uptake, water status, chlorophyll content, and photosynthetic activity. Our results show that specific Bacillus species from the Atacama Desert enhance drought stress tolerance in lettuce plants by promoting several beneficial plant traits that facilitate water absorption and nutrient uptake, which support the use of this unexplored and unexploited natural resource as potent bioinoculants to improve plant production under increasing drought conditions.
RESUMEN
Phytoremediation, an environmentally friendly and sustainable approach for addressing Cu-contaminated environments, remains underutilized in mine tailings. Arbuscular mycorrhizal fungi (AMF) play a vital role in reducing Cu levels in plants through various mechanisms, including glomalin stabilization, immobilization within fungal structures, and enhancing plant tolerance to oxidative stress. Yeasts also contribute to plant growth and metal tolerance by producing phytohormones, solubilizing phosphates, generating exopolysaccharides, and facilitating AMF colonization. This study aimed to assess the impact of AMF and yeast inoculation on the growth and antioxidant response of Oenothera picensis plants growing in Cu mine tailings amended with compost. Plants were either non-inoculated (NY) or inoculated with Meyerozyma guilliermondii (MG), Rhodotorula mucilaginosa (RM), or a combination of both (MIX). Plants were also inoculated with Claroideoglomus claroideum (CC), while others remained non-AMF inoculated (NM). The results indicated significantly higher shoot biomass in the MG-NM treatment, showing a 3.4-fold increase compared to the NY-NM treatment. The MG-CC treatment exhibited the most substantial increase in root biomass, reaching 5-fold that in the NY-NM treatment. Co-inoculation of AMF and yeast influenced antioxidant activity, particularly catalase and ascorbate peroxidase. Furthermore, AMF and yeast inoculation individually led to a 2-fold decrease in total phenols in the roots. Yeast inoculation notably reduced non-enzymatic antioxidant activity in the ABTS and CUPRAC assays. Both AMF and yeast inoculation promoted the production of photosynthetic pigments, further emphasizing their importance in phytoremediation programs for mine tailings.
RESUMEN
Solanum tuberosum (potato) is one of the most common crops worldwide; however, it is sensitive to water stress, which necessitates the identification of alternative tools to improve their production. Here, we evaluated the inoculation of two arbuscular mycorrhizal fungi (AMF) strains, Claroideoglomus claroideum (CC), Claroideoglomus lamellosum (HMC26), and the MIX (CC + HMC26) in yield and phenolic and antioxidant response using chromatographic and spectroscopic methods in potato crops, at increasing levels of water stress, namely, with 100% (0), 70% (S1), and 40% (S2) soil humidity. Two caffeoylquinic acid isomers were detected and their levels showed a tendency to increase under stress together with the AMF inoculation, reaching up to 19.2 mg kg-1 of 5-caffeoylquinic acid and 7.4 mg kg-1 of caffeoylquinic acid isomer when CC was inoculated, and potato plants grew at the highest water starvation condition (S2). Regarding antioxidant activities, a differentiated response was detected depending on the AMF strain, highlighting the effect of HMC26 on Trolox equivalent antioxidant capacity (TEAC) method and CC in cupric reducing antioxidant capacity (CUPRAC) method, reaching up to 1.5 µmol g-1 of TEAC in plants inoculated with HMC26 and 0.9 µmol g-1 of CUPRAC in plants inoculated with CC, both in potato tubers of plants growing under the S2 stress condition. Meanwhile, the use of AMF did not influence the number and biomass of the tubers, but significant changes in the biochemical properties of tubers were observed. The results suggest that specific AMF adaptations to water stress must be considered when inoculation procedures are planned to improve the yield and quality of tubers in potato crops.
RESUMEN
2-Ketones are signal molecules reported as plant growth stimulators, but their applications in vegetables have yet to be achieved. Solid lipid nanoparticles (SLNs) emerge as a relevant nanocarrier to develop formulations for the controlled release of 2-ketones. In this sense, seedlings of Lactuca sativa exposed to 125, 375, and 500 µL L-1 of encapsulated 2-nonanone and 2-tridecanone into SLNs were evaluated under controlled conditions. SLNs evidenced a spherical shape with a size of 230 nm. A controlled release of encapsulated doses of 2-nonanone and 2-tridecanone was observed, where a greater release was observed as the encapsulated dose of the compound increased. Root development was strongly stimulated mainly by 2-tridecanone and leaf area (25-32%) by 2-nonanone. Chlorophyll content increased by 15.8% with exposure to 500 µL L-1 of 2-nonanone, and carotenoid concentration was maintained with 2-nonanone. Antioxidant capacity decreased (13-62.7%) in L. sativa treated with 2-ketones, but the total phenol concentration strongly increased in seedlings exposed to some doses of 2-ketones. 2-Tridecanone strongly modulates the enzymatic activities associated with the scavenging of H2O2 at intra- and extracellular levels. In conclusion, 2-ketones released from SLNs modulated the growth and the antioxidant system of L. sativa, depending on the dose released.
RESUMEN
Irrigated agriculture is responsible for a third of global agricultural production, but the overuse of water resources and intensification of farming practices threaten its sustainability. The use of saline water in irrigation has become an alternative in areas subjected to frequent drought, but this practice affects plant growth due to osmotic impact and excess of ions. Plant-growth-promoting rhizobacteria (PGPR) can mitigate the negative impacts of salinity and other abiotic factors on crop yields. Actinobacteria from the hyper-arid Atacama Desert could increase the plant tolerance to salinity, allowing their use as biofertilizers for lettuce crops using waters with high salt contents. In this work, rhizosphere samples of halophytic Metharme lanata were obtained from Atacama Desert, and actinobacteria were isolated and identified by 16S gene sequencing. The PGPR activities of phosphate solubilization, nitrogen fixation, and the production of siderophore and auxin were assessed at increasing concentrations of NaCl, as well as the enhancement of salt tolerance in lettuce plants irrigated with 100 mM of NaCl. Photosynthesis activity and chlorophyll content, proline content, lipid peroxidation, cation and P concentration, and the identification and quantification of phenolic compounds were assessed. The strains S. niveoruber ATMLC132021 and S. lienomycini ATMLC122021 were positive for nitrogen fixation and P solubilization activities and produced auxin up to 200 mM NaCl. In lettuce plants, both strains were able to improve salt stress tolerance by increasing proline contents, carotenoids, chlorophyll, water use efficiency (WUE), stomatal conductance (gs), and net photosynthesis (A), concomitantly with the overproduction of the phenolic compound dicaffeoylquinic acid. All these traits were positively correlated with the biomass production under saltwater irrigation, suggesting its possible use as bioinoculants for the agriculture in areas where the water resources are scarce and usually with high salt concentrations.
RESUMEN
Potato (Solanum tuberosum) chips are the most consumed snacks worldwide today. Colored potato chips prepared from potato cultivars with red and purple flesh are a novel alternative to traditional potato chips because of their higher phenolic compound content, such as anthocyanins and hydroxycinnamic acid derivatives (HCADs), which might make these chips healthier compared with traditional chips. There is little information on the stability of these compounds. In this study, the nutritional value of these chips was evaluated by determining phenolic profiles, antioxidant activity and color parameters with liquid chromatography diode array and mass spectrometry detection (HPLC-DAD-ESI-MS/MS) and spectrophotometric methods during storage for four months. Five anthocyanins and three HCADs were detected, with the latter compounds being the most abundant, with concentrations on average between the first (97.82 mg kg-1) and the last (31.44 mg kg-1) week of storage. Similar trends were observed in antioxidant activity and stability, with the CUPRAC method showing the highest response among all the methods employed. The color indices were stable throughout the storage time. Based on these results, colored-flesh potato chips are an optimal alternative for consumption because of their high retention of phenolic compounds and antioxidant activity during storage, providing potential benefits to human health.
Asunto(s)
Antioxidantes , Solanum tuberosum , Humanos , Antocianinas , Ácidos Cumáricos , Fenoles , Bocadillos , Espectrometría de Masas en TándemRESUMEN
Potato (Solanum tuberosum) is one of the most important food crops worldwide, and Rhizoctonia solani infection is one of the most common diseases. The objective of this study was to evaluate the antifungal activity of Vitis vinifera byproducts (VIDES) and flesh-coloured potato (FCP) extracts against Rhizoctonia sp. in potato crops. Photosynthetic traits, phenolic profiles, and antioxidant and enzymatic activities were determined. The VIDES extract showed a 151.4% improvement in stomatal conductance and a 258.5% improvement in the photosynthetic rate compared to the plants without infection. Regarding the enzymatic antioxidant activity, the best response was found in the FCP treatments with 30 min of application, with increases of 25%, 161%, and 450% in ascorbate peroxidase, catalase (CAT), and glutathione reductase (GR) activities, respectively, compared to plants without infection. For the VIDES extract, a 15 min application produced an 83% increase in CAT activity, whereas a 181% increase in GR activity compared to plants without infection was produced after a 30 min application. A similar behaviour was observed for antioxidant compounds, where FCP had a higher concentration of compounds and antioxidant activity. This finding suggests that FCP and VIDES promote the synthesis of plant-defence compounds against Rhizoctonia sp. in potato crops, in which the application time is a determining factor.
RESUMEN
The excessive application of pesticides and fertilizers has generated losses in biological diversity, environmental pollution, and harmful effects on human health. Under this context, nanotechnology constitutes an innovative tool to alleviate these problems. Notably, applying nanocarriers as controlled release systems (CRSs) for agrochemicals can overcome the limitations of conventional products. A CRS for agrochemicals is an eco-friendly strategy for the ecosystem and human health. Nanopesticides based on synthetic and natural polymers, nanoemulsions, lipid nanoparticles, and nanofibers reduce phytopathogens and plant diseases. Nanoproducts designed with an environmentally responsive, controlled release offer great potential to create formulations that respond to specific environmental stimuli. The formulation of nanofertilizers is focused on enhancing the action of nutrients and growth stimulators, which show an improved nutrient release with site-specific action using nanohydroxyapatite, nanoclays, chitosan nanoparticles, mesoporous silica nanoparticles, and amorphous calcium phosphate. However, despite the noticeable results for nanopesticides and nanofertilizers, research still needs to be improved. Here, we review the relevant antecedents in this topic and discuss limitations and future challenges.
RESUMEN
Rosehips (Rosa spp., Rosaceae) are wild rose bushes with more than 100 species. Its fruits vary in colour and size, depending on the species, and are recognised for their nutritional characteristics. Ten samples of Rosa canina L. and Rosa rubiginosa L. fruits were collected at different geographical points from Southern Chile. Nutrients such as crude protein and minerals and functional properties such as phenolic compounds, ascorbic acid, and also antioxidant activities were evaluated by HPLC-DAD-ESI-MS/MS. The results revealed a high content of bioactive compounds, primarily ascorbic acid (6.0 to 8.2 mg g-1 fresh weight (FW)), flavonols (427.9 ± 0.4 µg g-1 FW) and antioxidant activity. We established a relationship between the antioxidant activity using Trolox equivalent antioxidant capacity (TEAC), cupric reducing antioxidant capacity (CUPRAC) and 2,2-diphenyl radical (DPPH) methods and the concentration of uncoloured compounds, such as flavonols and catechin. This antioxidant activity was primarily associated with the samples from Gorbea, Lonquimay, Loncoche, and Villarrica localities, and all of them were of the species Rosa rubiginosa L. The results here obtained represent novel information of rosehip fruits. In this sense, the reported information about compounds and antioxidant activities in rosehip fruits allowed us to continue new lines of research in relation to the potential formulation of new functional foods and also in the treatment and/or prevention of some diseases.
Asunto(s)
Antioxidantes , Rosa , Antioxidantes/química , Rosa/química , Espectrometría de Masas en Tándem , Frutas/química , Ácido Ascórbico/análisis , Extractos Vegetales/química , Flavonoles/análisisRESUMEN
Opportunistic pathogenic fungi arise in agricultural crops as well as in surrounding human daily life. The recent increase in antifungal-resistant strains has created the need for new effective antifungals, particularly those based on plant secondary metabolites, such as capsaicinoids and capsinoids produced by Capsicum species. The use of such natural compounds is well-aligned with the One Health approach, which tries to find an equilibrium among people, animals, and the environment. Considering this, the main objective of the present work is to review the antifungal potential of capsaicinoids and capsinoids, and to evaluate the environmental and health impacts of biofungicides based on these compounds. Overall, capsaicinoids and their analogues can be used to control pathogenic fungi growth in plant crops, as eco-friendly alternatives to pest management, and assist in the conservation and long-term storage of agrifood products. Their application in different stages of the agricultural and food production chains improves food safety, nutritional value, and overcomes antimicrobial resistance, with a lower associated risk to humans, animals, and the environment than that of synthetic fungicides and pesticides. Nevertheless, research on the effect of these compounds on bee-like beneficial insects and the development of new preservatives and packaging materials is still necessary.
RESUMEN
Reducing phosphate fertilizer inputs while increasing food nutritional quality has been posited as a major challenge to decrease human undernourishment and ensure food security. In this context, quinoa has emerged as a promising crop due to its ability to tolerate different stress conditions and grow in marginal soils with low nutrient content, in addition to the exceptional nutritional quality of its grains. However, there is scarce information about the phosphorus acquisition capacity of quinoa roots. This work aimed to provide new insights into P acquisition and functional root traits, such as root biomass, rhizosphere pH, carboxylate exudation, and acid phosphatase activity of thirty quinoa genotypes grown under P limiting conditions (7 mg P kg-1). Significant genotypic variation was observed among genotypes, with average P accumulation ranging from 1.2 to 11.8 mg. The shoot biomass production varied more than 14 times among genotypes and was correlated with the P accumulation on shoots (r = 0.91). Despite showing high variability in root traits, only root biomass production highly correlated with P acquisition (r = 0.77), suggesting that root growth/morphology rather than the measured biochemical activity possesses a critical role in the P nutrition of quinoa.
RESUMEN
Solanum tuberosum is one of the most important crops in the world; however, drought has caused significant losses in its production. One solution is the use of arbuscular mycorrhizal fungi (AMF). In this study, the phenolic profiles and antioxidant activity of the leaves of two potato genotypes (VR808 and CB2011-104) were evaluated over time in crops inoculated with two strains of AMF, as well as a consortium, in combination with a commercial fungicide. In addition, three usable humidity levels were established after the beginning of tuberization. The phenolic compounds found during the first sampling time in the VR808 genotype reached a maximum of 3348 mg kg-1, and in the CB2011-104 genotype, they reached a maximum of 2982 mg kg-1. Seven phenolic compounds were detected in the VR808 genotype, and eleven were detected in the CB2011-104 genotype, reaching the highest concentration at the last sampling time. The antioxidant activity in the first sampling was greater than the Trolox equivalent antioxidant capacity (TEAC), and in the third sampling, the cupric reducing antioxidant capacity (CUPRAC) predominated. The association of AMF with the plant by PCA demonstrated that these fungi assist in protecting the plants against water stress, since in the last harvest, the results were favorable with both mycorrhizae.
RESUMEN
Drought generates a complex scenario worldwide in which agriculture should urgently be reframed from an integrative point of view. It includes the search for new water resources and the use of tolerant crops and genotypes, improved irrigation systems, and other less explored alternatives that are very important, such as biotechnological tools that may increase the water use efficiency. Currently, a large body of evidence highlights the role of specific strains in the main microbial rhizosphere groups (arbuscular mycorrhizal fungi, yeasts, and bacteria) on increasing the drought tolerance of their host plants through diverse plant growth-promoting (PGP) characteristics. With this background, it is possible to suggest that the joint use of distinct PGP microbes could produce positive interactions or additive beneficial effects on their host plants if their co-inoculation does not generate antagonistic responses. To date, such effects have only been partially analyzed by using single omics tools, such as genomics, metabolomics, or proteomics. However, there is a gap of information in the use of multi-omics approaches to detect interactions between PGP and host plants. This approach must be the next scale-jump in the study of the interaction of soil-plant-microorganism. In this review, we analyzed the constraints posed by drought in the framework of an increasing global demand for plant production, integrating the important role played by the rhizosphere biota as a PGP agent. Using multi-omics approaches to understand in depth the processes that occur in plants in the presence of microorganisms can allow us to modulate their combined use and drive it to increase crop yields, improving production processes to attend the growing global demand for food.
RESUMEN
In potato (Solanum tuberosum) crops, the use of fungicides to control some diseases is widespread; however, it has been reported that this practice can modify the potato polyphenolic content, and new strategies oriented to the potato defense system are necessary. One alternative is the use of arbuscular mycorrhizal fungi (AMF) to improve the defense mechanisms of plants. In this study, phenolic profiles and antioxidant activities in leaves of three potato genotypes (CB2011-509, CB2011-104, and VR808) were evaluated in crops inoculated with three AMF strains (Claroideoglomus claroideum, Claroideoglomus lamellosum, and Fumneliformis mosseae) and with AMF in combination with the use of two commercial fungicides (MONCUT [M] and ReflectXtra [R]). Eight phenolic compounds were detected, mainly hydroxycinnamic acids (HCAD) and flavonols, in samples where the highest concentrations of HCAD were obtained, 5-caffeoylquinic acid was the most abundant phenolic. The antioxidant activity was higher using the cupric reducing antioxidant capacity (CUPRAC) and ferric reducing antioxidant power (FRAP) methods. The association of AMF with plants had benefits on the secondary metabolism; however, the response differed according to genotype. The different combinations of potato genotypes, AMF strain, and fungicide modified the content of phenolic compounds in leaves in different ways; the treatment using C. lamellosum and ReflectXtra was the ideal combination for the genotypes analyzed here, with the higher antioxidant response, which supports the further technological evaluation of efficient AMF strains and fungicides in potato crops.