Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37509327

RESUMEN

Malignant melanoma (MM) can spread to other organs and is resistant in part due to the presence of cancer stem cell subpopulations (CSCs). While a controversial high dose of interferon-alpha (IFN-α) has been used to treat non-metastatic high-risk melanoma, it comes with undesirable side effects. In this study, we evaluated the effect of low and high doses of IFN-α on CSCs by analyzing ALDH activity, side population and specific surface markers in established and patient-derived primary cell lines. We also assessed the clonogenicity, migration and tumor initiation capacities of IFN-α treated CSCs. Additionally, we investigated genomic modulations related to stemness properties using microRNA sequencing and microarrays. The effect of IFN-α on CSCs-derived exosomes was also analyzed using NanoSight and liquid chromatography (LC-HRMS)-based metabolomic analysis, among others. Our results showed that even low doses of IFN-α reduced CSC formation and stemness properties, and led to a significant decrease in the ability to form tumors in mice xenotransplants. IFN-α also modulated the expression of genes and microRNAs involved in several cancer processes and metabolomics of released exosomes. Our work suggests the utility of low doses of interferon, combined with the analysis of metabolic biomarkers, as a potential clinical approach against the aggressiveness of CSCs in melanoma.

2.
Pharmaceutics ; 14(5)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35631686

RESUMEN

There is a global need to discover effective anti-cancerous compounds from natural sources. Cultivated wheat cells can be a valuable source of non-toxic or low toxic plant-derived polysaccharides. In this study, we evaluated the anti-cancer ability of seven fractions of wheat cell culture polysaccharides (WCCPSs) in the HCT-116 colon cancer cell line. Almost all (6/7) fractions had an inhibitory effect on the proliferation of colon cancer cells, and two fractions (A-b and A-f) had considerable therapeutic indexes. The WCCPS fractions induced cell cycle arrest in the G1 phase and induced different rates of apoptosis (≤48%). Transmission and scanning electron microscopy revealed that WCCPS fractions caused apoptotic changes in the nucleus and cytoplasm, including damage to mitochondria and external morphological signs of apoptosis. In addition, the WCCPSs induced an increase in the levels of Bax, cytochrome c, and caspases 8 and 3, indicating that cell death progressed through intrinsic and extrinsic pathways of apoptosis. Furthermore, some fractions caused a significant decrease of c-Myc, b-catenin, NFkB2, and HCAM (CD 44) levels, indicating enhanced cell differentiation. Thus, for the first time, our results provide a proof of concept of the anti-cancer capacity of WCCPS fractions in colorectal cancer.

3.
Biomacromolecules ; 22(4): 1374-1388, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33724003

RESUMEN

The latest trends in cancer research and nanomedicine focus on using nanocarriers to target cancer stem cells (CSCs). Specifically, lipid liquid nanocapsules are usually developed as nanocarriers for lipophilic drug delivery. Here, we developed olive oil liquid NCs (O2LNCs) functionalized by covalent coupling of an anti-CD44-fluorescein isothiocyanate antibody (αCD44). First, O2LNCs are formed by a core of olive oil surrounded by a shell containing phospholipids, a nonionic surfactant, and deoxycholic acid molecules. Then, O2LNCs were coated with an αCD44 antibody (αCD44-O2LNC). The optimization of an αCD44 coating procedure, a complete physicochemical characterization, as well as clear evidence of their efficacy in vitro and in vivo were demonstrated. Our results indicate the high targeted uptake of these αCD44-O2LNCs, and the increased antitumor efficacy (up to four times) of paclitaxel-loaded-αCD44-O2LNC compared to free paclitaxel in pancreatic CSCs (PCSCs). Also, αCD44-O2LNCs were able to selectively target PCSCs in an orthotopic xenotransplant in vivo model.


Asunto(s)
Nanocápsulas , Neoplasias Pancreáticas , Humanos , Células Madre Neoplásicas , Aceite de Oliva , Paclitaxel/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico
4.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35008796

RESUMEN

The mitogen-activated protein kinase (MAPK) family is an important bridge in the transduction of extracellular and intracellular signals in different responses at the cellular level. Within this MAPK family, the p38 kinases can be found altered in various diseases, including cancer, where these kinases play a fundamental role, sometimes with antagonistic mechanisms of action, depending on several factors. In fact, this family has an immense number of functionalities, many of them yet to be discovered in terms of regulation and action in different types of cancer, being directly involved in the response to cancer therapies. To date, three main groups of MAPKs have been identified in mammals: the extracellular signal-regulated kinases (ERK), Jun N-terminal kinase (JNK), and the different isoforms of p38 (α, ß, γ, δ). In this review, we highlight the mechanism of action of these kinases, taking into account their extensive regulation at the cellular level through various modifications and modulations, including a wide variety of microRNAs. We also analyze the importance of the different isoforms expressed in the different tissues and their possible role as biomarkers and molecular targets. In addition, we include the latest preclinical and clinical trials with different p38-related drugs that are ongoing with hopeful expectations in the present/future of developing precision medicine in cancer.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Ensayos Clínicos como Asunto , Humanos , Especificidad por Sustrato
5.
Int J Mol Sci ; 20(13)2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-31284513

RESUMEN

Currently, there is increasing evidence linking diabetes mellitus (especially type 2 diabetes mellitus) with carcinogenesis through various biological processes, such as fat-induced chronic inflammation, hyperglycemia, hyperinsulinemia, and angiogenesis. Chemotherapeutic agents are used in the treatment of cancer, but in most cases, patients develop resistance. Phenformin, an oral biguanide drug used to treat type 2 diabetes mellitus, was removed from the market due to a high risk of fatal lactic acidosis. However, it has been shown that phenformin is, with other biguanides, an authentic tumor disruptor, not only by the production of hypoglycemia due to caloric restriction through AMP-activated protein kinase with energy detection (AMPK) but also as a blocker of the mTOR regulatory complex. Moreover, the addition of phenformin eliminates resistance to antiangiogenic tyrosine kinase inhibitors (TKI), which prevent the uncontrolled metabolism of glucose in tumor cells. In this review, we evidence the great potential of phenformin as an anticancer agent. We thoroughly review its mechanism of action and clinical trial assays, specially focusing on current challenges and future perspectives of this promising drug.


Asunto(s)
Antineoplásicos/farmacología , Fenformina/farmacología , Animales , Diabetes Mellitus Tipo 2/complicaciones , Humanos , Modelos Biológicos , Neoplasias/tratamiento farmacológico , Fenformina/química , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...