Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Klin Intensivmed Notfmed ; 115(Suppl 1): 28-36, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32095838

RESUMEN

Multiorgan failure is among the most frequent reasons of death in critically ill patients. Based on extensive and long-term use of renal replacement therapy, extracorporeal organ support became available for other organ failures. Initially, most of these techniques (e.g. extracorporeal membrane oxygenation, extracorporeal CO2 removal [ECCO2R] and extracorporeal liver support) were used as stand-alone single organ support systems. Considering multiple interactions between native organs ("crosstalk"), combined or integrated extracorporeal organ support (ECOS) devices are intriguing. The concept of multiple organ support therapy (MOST) providing simultaneous and combined support for different failing organs was described more than 15 years ago by Ronco and Bellomo. This concept also implicates overcoming the "compartmentalized" approach provided by different single organ specialized professionals by a multidisciplinary and multiprofessional strategy. The idea of MOST is supported by the failure of several recent studies on single organ support including liver and lung support. Improvement of outcome by ECOS necessarily depends on optimized patient selection, integrated organ support and limitation of its side effects. This implicates challenges for engineers, industry and healthcare professionals. From a technical viewpoint, modular combination of pre-existing technologies such as renal replacement, albumin-dialysis, ECCO2R and potentially cytokine elimination can be considered as a first step. While this allows for stepwise and individual combination of standard organ support facilities, it carries the disadvantage of large extracorporeal blood volume and surfaces as well as additive costs. The more intriguing next step is an integrated platform providing the capacity of multiple organ support within one device. (This article is freely available.).


Asunto(s)
Oxigenación por Membrana Extracorpórea , Insuficiencia Multiorgánica/terapia , Enfermedad Crítica , Humanos , Diálisis Renal , Terapia de Reemplazo Renal
2.
J Biomed Nanotechnol ; 11(3): 500-11, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26307832

RESUMEN

Here, we demonstrate the ability of solid lipid nanoparticle-based non-viral vectors to increase the α-galactosidase A levels of the IMFE1 cell line, an in vitro model for target cells in Fabry disease. For this purpose, vectors containing the pR-M10-αGal A plasmid, which encodes the α-galactosidase A enzyme, were prepared; the in vitro transfection efficacy was studied in IMFE1 cells, and the results were confirmed by RT-PCR. The cellular uptake of the vectors, intracellular disposition of the plasmid, and probable endocytosis pathways of the nanoparticles were also analyzed. The vectors used for the studies carried protamine (P-DNA-SLN), dextran and protamine (D-P-DNA-SLN), or hyaluronic acid of two different molecular weights and protamine (HA150-P-DNA-SLN or HA500-P-DNA-SLN). The new formulations, which presented a particle size in the range of nanometers (from 218 nm to 348 nm) and a positive superficial charge, were able to increase α-galactosidase A activity up to 4-fold in comparison to non treated IMFE1 cells. The most efficient vectors were those that included HA, and no differences due to changes in the molecular weight of HA were detected. The observed lack of colocalization with each of the four different Nile Red-labeled vectors and transferrin or cholera toxin appears to indicate that clathrin- and caveolae-independent pathways may be involved in their cellular uptake. Additionally, colocalization with LysoTracker indicated that the formulations were exposed to lysosomal activity, which may be responsible for the release of the plasmid from the vector. In conclusion, we reveal the potential of SLN-based vectors to efficiently transfect an immortalized Fabry patient cell line.


Asunto(s)
Enfermedad de Fabry/genética , Enfermedad de Fabry/terapia , Vectores Genéticos/genética , Lípidos/química , Nanocápsulas/química , Transfección/métodos , Línea Celular , Difusión , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/química , Humanos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...