Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Thromb Haemost ; 21(5): 1352-1365, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36736831

RESUMEN

BACKGROUND: Germline mutations in RUNX1 can cause a familial platelet disorder that may lead to acute myeloid leukemia, an autosomal dominant disorder characterized by moderate thrombocytopenia, platelet dysfunction, and a high risk of developing acute myeloid leukemia or myelodysplastic syndrome. Discerning the pathogenicity of novel RUNX1 variants is critical for patient management. OBJECTIVES: To extend the characterization of RUNX1 variants and evaluate their effects by transcriptome analysis. METHODS: Three unrelated patients with long-standing thrombocytopenia carrying heterozygous RUNX1 variants were included: P1, who is a subject with recent development of myelodysplastic syndrome, with c.802 C>T[p.Gln268∗] de novo; P2 with c.586A>G[p.Thr196Ala], a variant that segregates with thrombocytopenia and myeloid neoplasia in the family; and P3 with c.476A>G[p.Asn159Ser], which did not segregate with thrombocytopenia or neoplasia. Baseline platelet evaluations were performed. Ultrapure platelets were prepared for platelet transcriptome analysis. RESULTS: In P1 and P2, but not in P3, transcriptome analysis confirmed aberrant expression of genes recognized as RUNX1 targets. Data allowed grouping patients by distinct gene expression profiles, which were partitioned with clinical parameters. Functional studies and platelet mRNA expression identified alterations in the actin cytoskeleton, downregulation of GFI1B, defective GPVI downstream signaling, and reduction of alpha granule proteins, such as thrombospondin-1, as features likely implicated in thrombocytopenia and platelet dysfunction. CONCLUSION: Platelet phenotype, familial segregation, and platelet transcriptomics support the pathogenicity of RUNX1 variants p.Gln268∗ and p.Thr196Ala, but not p.Asn159Ser. This study is an additional proof of concept that platelet RNA analysis could be a tool to help classify pathogenic RUNX1 variants and identify novel RUNX1 targets.


Asunto(s)
Trastornos de las Plaquetas Sanguíneas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Trombocitopenia , Humanos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Mutación de Línea Germinal , Trastornos de las Plaquetas Sanguíneas/complicaciones , Trombocitopenia/genética , Trombocitopenia/complicaciones , Leucemia Mieloide Aguda/genética , Perfilación de la Expresión Génica , Células Germinativas/metabolismo , Mutación
2.
Sci Rep ; 7(1): 11684, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28916741

RESUMEN

A series of calcium alginate composite hydrogels with several calcium chloride contents ranging from 3 to 18 wt.% with and without 0.1 wt.% of graphene oxide (GO) was prepared in order to study the effect of crosslinking and nanofilling on water diffusion and compression performance. Thus, for high crosslinker contents, these composite hydrogels exhibited ultrafast diffusion of liquid water and excellent compression properties as compared with control (0 wt.% GO and the same crosslinking). These remarkable results are produced due to calcium cations are able to crosslink alginate and also graphene oxide nanosheets to form large crosslinked GO networks inside the calcium alginate hydrogels. Besides, these crosslinked GO/calcium alginate networks present nanochannels, as confirmed by electron microscopy, able to improve significantly water diffusion. Thus, these composite materials are very promising for many industrial applications demanding low-cost hydrogels with improved mechanical and water diffusion properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...