Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 892: 164467, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37268115

RESUMEN

Along its route through the agro-food system nitrogen (N) can be wasted, heightening diverse environmental problems. Geopolitical instabilities affect prices of N fertilisers and livestock feed, challenging production systems and increasing their need to reduce N waste. The analysis of N flows is essential to understanding the agroenvironmental performance of agro-food systems to detect leakages and to design strategies for reducing N pollution while producing feed and food. Sectorial analyses can mislead conclusions, prompting the need for integrated approaches. We present a multiscale analysis of N flows for the 1990-2015 period to identify both the strengths and weaknesses of the Spanish agro-food system. We constructed N budgets at three system scales, namely crop, livestock and the agro-food system, and at two spatial scales: national and regional (50 provinces). The big picture shows a country with increasing crop (575 to 634 GgN/yr) and livestock (138 to 202 GgN/yr, edible) production and nitrogen use efficiency improvements, especially for certain crop and livestock categories. Nevertheless, this falls short of reducing agricultural surpluses (812 GgN/yr) and external dependency, which is closely related to the externalisation of certain environmental impacts (system NUE, from 31 % to 19 % considering externalisation). The regional picture shows the contrasted operation between provinces, assigned to three agro-food system categories: fuelled by synthetic fertiliser (29 provinces), grassland inputs to livestock (5 provinces) or the net import of feed (16 provinces). Regional specialisation on crop or livestock production was reinforced, hampering good recirculation of N through livestock feed from regional cropland and their N fertilisation by regional livestock excretion. We conclude that pollution and external dependency need to be further reduced in Spain. To do so, the big picture of the full system is paramount but must be adapted to the regional particularities.


Asunto(s)
Agricultura , Nitrógeno , Animales , Ambiente , Alimentos , Contaminación Ambiental , Ganado , Fertilizantes
2.
Entropy (Basel) ; 23(5)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34067228

RESUMEN

Estimates suggest that more than 70% of the world's rangelands are degraded. The Normalized Difference Vegetation Index (NDVI) is commonly used by ecologists and agriculturalists to monitor vegetation and contribute to more sustainable rangeland management. This paper aims to explore the scaling character of NDVI and NDVI anomaly (NDVIa) time series by applying three fractal analyses: generalized structure function (GSF), multifractal detrended fluctuation analysis (MF-DFA), and Hurst index (HI). The study was conducted in four study areas in Southeastern Spain. Results suggest a multifractal character influenced by different land uses and spatial diversity. MF-DFA indicated an antipersistent character in study areas, while GSF and HI results indicated a persistent character. Different behaviors of generalized Hurst and scaling exponents were found between herbaceous and tree dominated areas. MF-DFA and surrogate and shuffle series allow us to study multifractal sources, reflecting the importance of long-range correlations in these areas. Two types of long-range correlation appear to be in place due to short-term memory reflecting seasonality and longer-term memory based on a time scale of a year or longer. The comparison of these series also provides us with a differentiating profile to distinguish among our four study areas that can improve land use and risk management in arid rangelands.

3.
Sci Adv ; 5(9): eaau2406, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31579815

RESUMEN

Global warming is expected to increase the frequency and intensity of severe water scarcity (SWS) events, which negatively affect rain-fed crops such as wheat, a key source of calories and protein for humans. Here, we develop a method to simultaneously quantify SWS over the world's entire wheat-growing area and calculate the probabilities of multiple/sequential SWS events for baseline and future climates. Our projections show that, without climate change mitigation (representative concentration pathway 8.5), up to 60% of the current wheat-growing area will face simultaneous SWS events by the end of this century, compared to 15% today. Climate change stabilization in line with the Paris Agreement would substantially reduce the negative effects, but they would still double between 2041 and 2070 compared to current conditions. Future assessments of production shocks in food security should explicitly include the risk of severe, prolonged, and near-simultaneous droughts across key world wheat-producing areas.


Asunto(s)
Cambio Climático , Productos Agrícolas , Modelos Teóricos , Triticum , Agua , Abastecimiento de Alimentos , Geografía , Calentamiento Global , Humanos , Estaciones del Año
5.
Proc Natl Acad Sci U S A ; 116(1): 123-128, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30584094

RESUMEN

Food security relies on the resilience of staple food crops to climatic variability and extremes, but the climate resilience of European wheat is unknown. A diversity of responses to disturbance is considered a key determinant of resilience. The capacity of a sole crop genotype to perform well under climatic variability is limited; therefore, a set of cultivars with diverse responses to weather conditions critical to crop yield is required. Here, we show a decline in the response diversity of wheat in farmers' fields in most European countries after 2002-2009 based on 101,000 cultivar yield observations. Similar responses to weather were identified in cultivar trials among central European countries and southern European countries. A response diversity hotspot appeared in the trials in Slovakia, while response diversity "deserts" were identified in Czechia and Germany and for durum wheat in southern Europe. Positive responses to abundant precipitation were lacking. This assessment suggests that current breeding programs and cultivar selection practices do not sufficiently prepare for climatic uncertainty and variability. Consequently, the demand for climate resilience of staple food crops such as wheat must be better articulated. Assessments and communication of response diversity enable collective learning across supply chains. Increased awareness could foster governance of resilience through research and breeding programs, incentives, and regulation.


Asunto(s)
Clima , Triticum/fisiología , Producción de Cultivos/estadística & datos numéricos , Europa (Continente) , Abastecimiento de Alimentos , Fitomejoramiento , Análisis de Componente Principal , Lluvia , Temperatura , Tiempo (Meteorología)
6.
Nat Commun ; 9(1): 4249, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30315168

RESUMEN

Understanding the drivers of yield levels under climate change is required to support adaptation planning and respond to changing production risks. This study uses an ensemble of crop models applied on a spatial grid to quantify the contributions of various climatic drivers to past yield variability in grain maize and winter wheat of European cropping systems (1984-2009) and drivers of climate change impacts to 2050. Results reveal that for the current genotypes and mix of irrigated and rainfed production, climate change would lead to yield losses for grain maize and gains for winter wheat. Across Europe, on average heat stress does not increase for either crop in rainfed systems, while drought stress intensifies for maize only. In low-yielding years, drought stress persists as the main driver of losses for both crops, with elevated CO2 offering no yield benefit in these years.


Asunto(s)
Sequías , Triticum/fisiología , Zea mays/fisiología , Cambio Climático , Europa (Continente) , Calor , Estaciones del Año
7.
Sci Total Environ ; 621: 1330-1341, 2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-29070449

RESUMEN

The termination date is recognized as a key management factor to enhance cover crops for multiple benefits and to avoid competition with the following cash crop. However, the optimum date depends on annual meteorological conditions, and climate variability induces uncertainty in a decision that needs to be taken every year. One of the most important cover crop benefits is reducing nitrate leaching, a major concern for irrigated agricultural systems and highly affected by the termination date. This study aimed to determine the effects of cover crops and their termination date on the water and N balances of an irrigated Mediterranean agroecosystem under present and future climate conditions. For that purpose, two field experiments were used for inverse calibration and validation of the WAVE model (Water and Agrochemicals in the soil and Vadose Environment), based on continuous soil water content data, soil nitrogen content and crop measurements. The calibrated and validated model was subsequently used in advanced scenario analysis under present and climate change conditions. Under present conditions, a late termination date increased cover crop biomass and subsequently soil water and N depletion. Hence, preemptive competition risk with the main crop was enhanced, but a reduction of nitrate leaching also occurred. The hypothetical planting date of the following cash crop was also an important tool to reduce preemptive competition. Under climate change conditions, the simulations showed that the termination date will be even more important to reduce preemptive competition and nitrate leaching.

8.
Glob Chang Biol ; 24(3): 1291-1307, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29245185

RESUMEN

Climate change impact assessments are plagued with uncertainties from many sources, such as climate projections or the inadequacies in structure and parameters of the impact model. Previous studies tried to account for the uncertainty from one or two of these. Here, we developed a triple-ensemble probabilistic assessment using seven crop models, multiple sets of model parameters and eight contrasting climate projections together to comprehensively account for uncertainties from these three important sources. We demonstrated the approach in assessing climate change impact on barley growth and yield at Jokioinen, Finland in the Boreal climatic zone and Lleida, Spain in the Mediterranean climatic zone, for the 2050s. We further quantified and compared the contribution of crop model structure, crop model parameters and climate projections to the total variance of ensemble output using Analysis of Variance (ANOVA). Based on the triple-ensemble probabilistic assessment, the median of simulated yield change was -4% and +16%, and the probability of decreasing yield was 63% and 31% in the 2050s, at Jokioinen and Lleida, respectively, relative to 1981-2010. The contribution of crop model structure to the total variance of ensemble output was larger than that from downscaled climate projections and model parameters. The relative contribution of crop model parameters and downscaled climate projections to the total variance of ensemble output varied greatly among the seven crop models and between the two sites. The contribution of downscaled climate projections was on average larger than that of crop model parameters. This information on the uncertainty from different sources can be quite useful for model users to decide where to put the most effort when preparing or choosing models or parameters for impact analyses. We concluded that the triple-ensemble probabilistic approach that accounts for the uncertainties from multiple important sources provide more comprehensive information for quantifying uncertainties in climate change impact assessments as compared to the conventional approaches that are deterministic or only account for the uncertainties from one or two of the uncertainty sources.


Asunto(s)
Cambio Climático , Productos Agrícolas/fisiología , Modelos Biológicos , Incertidumbre , Regiones Árticas , Productos Agrícolas/crecimiento & desarrollo , Finlandia , Predicción , Región Mediterránea , España , Factores de Tiempo
9.
Ann Bot ; 97(3): 377-88, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16390842

RESUMEN

BACKGROUND: Plant structural (i.e. architectural) models explicitly describe plant morphology by providing detailed descriptions of the display of leaf and stem surfaces within heterogeneous canopies and thus provide the opportunity for modelling the functioning of plant organs in their microenvironments. The outcome is a class of structural-functional crop models that combines advantages of current structural and process approaches to crop modelling. ALAMEDA is such a model. METHODS: The formalism of Lindenmayer systems (L-systems) was chosen for the development of a structural model of the faba bean canopy, providing both numerical and dynamic graphical outputs. It was parameterized according to the results obtained through detailed morphological and phenological descriptions that capture the detailed geometry and topology of the crop. The analysis distinguishes between relationships of general application for all sowing dates and stem ranks and others valid only for all stems of a single crop cycle. RESULTS AND CONCLUSIONS: The results reveal that in faba bean, structural parameterization valid for the entire plant may be drawn from a single stem. ALAMEDA was formed by linking the structural model to the growth model 'Simulation d'Allongement des Feuilles' (SAF) with the ability to simulate approx. 3500 crop organs and components of a group of nine plants. Model performance was verified for organ length, plant height and leaf area. The L-system formalism was able to capture the complex architecture of canopy leaf area of this indeterminate crop and, with the growth relationships, generate a 3D dynamic crop simulation. Future development and improvement of the model are discussed.


Asunto(s)
Modelos Estructurales , Vicia faba/anatomía & histología , Simulación por Computador , Hojas de la Planta/anatomía & histología , Tallos de la Planta/anatomía & histología , Factores de Tiempo , Vicia faba/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...