Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 10(4)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37106676

RESUMEN

The low long-term patency of bypass grafts is a major concern for cardiovascular treatments. Unfavourable haemodynamic conditions in the proximity of distal anastomosis are closely related to thrombus creation and lumen lesions. Modern graft designs address this unfavourable haemodynamic environment with the introduction of a helical component in the flow field, either by means of out-of-plane helicity graft geometry or a spiral ridge. While the latter has been found to lack in performance when compared to the out-of-plane helicity designs, recent findings support the idea that the existing spiral ridge grafts can be further improved in performance through optimising relevant design parameters. In the current study, robust multi-objective optimisation techniques are implemented, covering a wide range of possible designs coupled with proven and well validated computational fluid dynamics (CFD) algorithms. It is shown that the final set of suggested design parameters could significantly improve haemodynamic performance and therefore could be used to enhance the design of spiral ridge bypass grafts.

2.
Sci Rep ; 7(1): 1865, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28500311

RESUMEN

Graft failure is currently a major concern for medical practitioners in treating Peripheral Vascular Disease (PVD) and Coronary Artery Disease (CAD). It is now widely accepted that unfavourable haemodynamic conditions play an essential role in the formation and development of intimal hyperplasia, which is the main cause of graft failure. This paper uses Computational Fluid Dynamics (CFD) to conduct a parametric study to enhance the design and performance of a novel prosthetic graft, which utilises internal ridge(s) to induce spiral flow. This design is primarily based on the identification of the blood flow as spiral in the whole arterial system and is believed to improve the graft longevity and patency rates at distal graft anastomoses. Four different design parameters were assessed in this work and the trailing edge orientation of the ridge was identified as the most important parameter to induce physiological swirling flow, while the height of the ridge also significantly contributed to the enhanced performance of this type of graft. Building on these conclusions, an enhanced configuration of spiral graft is proposed and compared against conventional and spiral grafts to reaffirm its potential benefits.


Asunto(s)
Hemodinámica , Modelos Cardiovasculares , Injerto Vascular , Algoritmos , Velocidad del Flujo Sanguíneo , Simulación por Computador , Enfermedad de la Arteria Coronaria/fisiopatología , Enfermedad de la Arteria Coronaria/cirugía , Estudios Transversales , Humanos , Resistencia al Corte
3.
PLoS One ; 11(11): e0165892, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27861485

RESUMEN

In the present work, numerical simulations were conducted for a typical end-to-side distal graft anastomosis to assess the effects of inducing secondary flow, which is believed to remove unfavourable flow environment. Simulations were carried out for four models, generated based on two main features of 'out-of-plane helicity' and 'spiral ridge' in the grafts as well as their combination. Following a qualitative comparison against in vitro data, various mean flow and hemodynamic parameters were compared and the results showed that helicity is significantly more effective in inducing swirling flow in comparison to a spiral ridge, while their combination could be even more effective. In addition, the induced swirling flow was generally found to be increasing the wall shear stress and reducing the flow stagnation and particle residence time within the anastomotic region and the host artery, which may be beneficial to the graft longevity and patency rates. Finally, a parametric study on the spiral ridge geometrical features was conducted, which showed that the ridge height and the number of spiral ridges have significant effects on inducing swirling flow, and revealed the potential of improving the efficiency of such designs.


Asunto(s)
Anastomosis Quirúrgica , Vasos Sanguíneos , Hemodinámica , Modelos Cardiovasculares , Algoritmos , Velocidad del Flujo Sanguíneo , Simulación por Computador , Humanos , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...