Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 27(4): 109462, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38550995

RESUMEN

Behavioral changes play an important role for animals to cope with human-induced rapid environmental change such as biological invasions. The concept of eco-evolutionary experience (EEE) postulates that native species are more strongly impacted by non-native species the more these differ from species they have coevolved with. Also, EEE could influence the degree of innovation in new behaviors shown by native species. We conceived categorization schemes to assess both EEE and innovation and applied them to 86 records of behavioral change in native birds (n = 50), mammals (n = 19), and amphibians (n = 17). The results of this proof-of-concept study suggest an interconnectedness of EEE, innovation, and resulting population dynamics of native species. However, quantitative analyses were limited by the small size of our dataset. We encourage the use of the categorization schemes proposed here to close important knowledge gaps, so that our findings can be revisited with larger datasets in the future.

2.
Ecol Lett ; 26(12): 2066-2076, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37818595

RESUMEN

Bird species on islands are strongly impacted by biological invasions, with the Icelandic common eider (Somateria mollissima borealis) being particularly threatened. Down collection by local families in Breiðafjörður, West Iceland, provided long-term datasets of nests from two archipelagos, covering 95 islands over 123 years and 39 islands over 27 years, respectively. Using these exceptional datasets, we found that the arrival of the invasive semi-aquatic American mink (Neogale vison) was a more impactful driver of population dynamics than climate. This invasive predator heavily reduced eider nest numbers by ca. 60% in the Brokey archipelago. In contrast, we detected an apparently adaptive response to the return of the native fox in the Purkey archipelago, with dense nests on islands inaccessible to the fox and no apparent impact on eider populations. This difference might be due to the eiders lacking a joint evolutionary history with the mink and therefore lacking appropriate antipredator responses.


Asunto(s)
Patos , Zorros , Animales , Aves , Patos/fisiología , Zorros/fisiología , Islandia , Dinámica Poblacional
3.
Ecohealth ; 19(4): 475-486, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36611108

RESUMEN

Batrachochytrium salamandrivorans (Bsal), a species related to the destructive pathogen Batrachochytrium dendrobatidis (Bd), was found and identified in Europe in 2013. Now, a decade later, a large amount of information is available. This includes data from studies in the field, reports of infection in captive amphibians, laboratory studies testing host susceptibility, and data from prospective studies that test for Bsal's presence in a location. We conducted a systematic review of the published literature and compiled a dataset of Bsal tests. We identified 67 species that have been reported positive for Bsal, 20 of which have a threatened conservation status. The distribution of species that have been found with infection encompasses 69 countries, highlighting the potential threat that Bsal poses. We point out where surveillance to detect Bsal have taken place and highlight areas that have not been well monitored. The large number of host species belonging to the families Plethodontidae and Salamandridae suggests a taxonomic pattern of susceptibility. Our results provide insight into the risk posed by Bsal and identifies vulnerable species and areas where surveillance is needed to fill existing knowledge gaps.


Asunto(s)
Quitridiomicetos , Micosis , Humanos , Animales , Batrachochytrium , Estudios Prospectivos , Micosis/epidemiología , Micosis/veterinaria , Anfibios
4.
Sci Rep ; 11(1): 1356, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446753

RESUMEN

Intensified travel activities of humans and the ever growing global trade create opportunities of arthropod-borne disease agents and their vectors, such as mosquitoes, to establish in new regions. To update the knowledge of mosquito occurrence and distribution, a national mosquito monitoring programme was initiated in Germany in 2011, which has been complemented by a citizen science project, the 'Mückenatlas' since 2012. We analysed the 'Mückenatlas' dataset to (1) investigate causes of variation in submission numbers from the start of the project until 2017 and to (2) reveal biases induced by opportunistic data collection. Our results show that the temporal variation of submissions over the years is driven by fluctuating topicality of mosquito-borne diseases in the media and large-scale climate conditions. Hurdle models suggest a positive association of submission numbers with human population, catch location in the former political East Germany and the presence of water bodies, whereas precipitation and wind speed are negative predictors. We conclude that most anthropogenic and environmental effects on submission patterns are associated with the participants' (recording) behaviour. Understanding how the citizen scientists' behaviour shape opportunistic datasets help to take full advantage of the available information.


Asunto(s)
Ciencia Ciudadana , Participación de la Comunidad , Culicidae , Animales , Alemania , Humanos , Control de Mosquitos
5.
J Anim Ecol ; 89(11): 2531-2541, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32745238

RESUMEN

In the Anthropocene, species are faced with drastic challenges due to rapid, human-induced changes, such as habitat destruction, pollution and biological invasions. In the case of invasions, native species may change their behaviour to minimize the impacts they sustain from invasive species, and invaders may also adapt to the conditions in their new environment in order to survive and establish self-sustaining populations. We aimed at giving an overview of which changes in behaviour are studied in invasions, and what is known about the types of behaviour that change, the underlying mechanisms and the speed of behavioural changes. Based on a review of the literature, we identified 191 studies and 360 records (some studies reported multiple records) documenting behavioural changes caused by biological invasions in native (236 records from 148 species) or invasive (124 records from 50 species) animal species. This global dataset, which we make openly available, is not restricted to particular taxonomic groups. We found a mild taxonomic bias in the literature towards mammals, birds and insects. In line with the enemy release hypothesis, native species changed their anti-predator behaviour more frequently than invasive species. Rates of behavioural change were evenly distributed across taxa, but not across the types of behaviour. Our findings may help to better understand the role of behaviour in biological invasions as well as temporal changes in both population densities and traits of invasive species, and of native species affected by them.


Asunto(s)
Ecosistema , Especies Introducidas , Animales , Conducta Animal , Insectos , Densidad de Población
6.
Glob Ecol Biogeogr ; 29(6): 978-991, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34938151

RESUMEN

BACKGROUND AND AIMS: Since its emergence in the mid-20th century, invasion biology has matured into a productive research field addressing questions of fundamental and applied importance. Not only has the number of empirical studies increased through time, but also has the number of competing, overlapping and, in some cases, contradictory hypotheses about biological invasions. To make these contradictions and redundancies explicit, and to gain insight into the field's current theoretical structure, we developed and applied a Delphi approach to create a consensus network of 39 existing invasion hypotheses. RESULTS: The resulting network was analysed with a link-clustering algorithm that revealed five concept clusters (resource availability, biotic interaction, propagule, trait and Darwin's clusters) representing complementary areas in the theory of invasion biology. The network also displays hypotheses that link two or more clusters, called connecting hypotheses, which are important in determining network structure. The network indicates hypotheses that are logically linked either positively (77 connections of support) or negatively (that is, they contradict each other; 6 connections). SIGNIFICANCE: The network visually synthesizes how invasion biology's predominant hypotheses are conceptually related to each other, and thus, reveals an emergent structure - a conceptual map - that can serve as a navigation tool for scholars, practitioners and students, both inside and outside of the field of invasion biology, and guide the development of a more coherent foundation of theory. Additionally, the outlined approach can be more widely applied to create a conceptual map for the larger fields of ecology and biogeography.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...