Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Microbiology (Reading) ; 170(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38687006

RESUMEN

Antimicrobial resistance poses an escalating global threat, rendering traditional drug development approaches increasingly ineffective. Thus, novel alternatives to antibiotic-based therapies are needed. Exploiting pathogen cooperation as a strategy for combating resistant infections has been proposed but lacks experimental validation. Empirical findings demonstrate the successful invasion of cooperating populations by non-cooperating cheats, effectively reducing virulence in vitro and in vivo. The idea of harnessing cooperative behaviours for therapeutic benefit involves exploitation of the invasive capabilities of cheats to drive medically beneficial traits into infecting populations of cells. In this study, we employed Pseudomonas aeruginosa quorum sensing cheats to drive antibiotic sensitivity into both in vitro and in vivo resistant populations. We demonstrated the successful invasion of cheats, followed by increased antibiotic effectiveness against cheat-invaded populations, thereby establishing an experimental proof of principle for the potential application of the Trojan strategy in fighting resistant infections.


Asunto(s)
Antibacterianos , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Percepción de Quorum , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/crecimiento & desarrollo , Antibacterianos/farmacología , Percepción de Quorum/efectos de los fármacos , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/tratamiento farmacológico , Animales , Virulencia/efectos de los fármacos , Farmacorresistencia Bacteriana , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
2.
Microbiology (Reading) ; 169(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38050845

RESUMEN

In this primer on biofilms and their role in infections, we trace the historical roots of microbial understanding from Van Leeuwenhoek's observations to Bill Costerton's groundbreaking work, which solidified biofilms' significance in infections. In vivo biofilm research, investigating patient samples and utilizing diverse host models, has yielded invaluable insights into these complex microbial communities. However, it comes with several challenges, particularly regarding replicating biofilm infections accurately in the laboratory. In vivo biofilm analyses involve various techniques, revealing biofilm architecture, composition, and behaviour, while gaps in knowledge persist regarding infection initiation and source, diversity, and the Infectious Microenvironment (IME). Ultimately, the study of biofilms in infections remains a dynamic and evolving field poised to transform our approach to combat biofilm-associated diseases.


Asunto(s)
Biopelículas , Infecciones , Humanos , Infecciones/microbiología
3.
Biofilm ; 6: 100160, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37928619

RESUMEN

Chronic rhinosinusitis (CRS) is a debilitating condition characterized by long-lasting inflammation of the paranasal sinuses. It affects a significant portion of the population, causing a considerable burden on individuals and healthcare systems. The pathogenesis of CRS is multifactorial, with bacterial infections playing a crucial role in CRS development and persistence. In recent years, the presence of biofilms has emerged as a key contributor to the chronicity of sinusitis, further complicating treatment and exacerbating symptoms. This review aims to explore the role of biofilms in CRS, focusing on the involvement of the bacterial species Staphylococcus aureus and Pseudomonas aeruginosa, their interactions in chronic infections, and model systems for studying biofilms in CRS. These species serve as an example of how microbial interplay can influence disease progression and exemplify the need for continued investigation and innovation in CRS research.

4.
Res Sq ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37986882

RESUMEN

Antimicrobial resistance poses an escalating global threat, rendering traditional drug development approaches increasingly ineffective. Thus, novel alternatives to antibiotic-based therapies are needed. Exploiting pathogen cooperation as a strategy for combating resistant infections has been proposed but lacks experimental validation. Empirical findings demonstrate the successful invasion of cooperating populations by non-cooperating cheats, effectively reducing virulence in vitro and in vivo. The idea of harnessing cooperative behaviors for therapeutic benefit involves exploitation of the invasive capabilities of cheats to drive medically beneficial traits into infecting populations of cells. In this study, we employed Pseudomonas aeruginosa quorum sensing cheats to drive antibiotic sensitivity into both in vitro and in vivo resistant populations. We demonstrated the successful invasion of cheats, followed by increased antibiotic effectiveness against cheat-invaded populations, thereby establishing an experimental proof of principle for the potential application of the Trojan strategy in fighting resistant infections.

5.
Nature ; 618(7964): 358-364, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225987

RESUMEN

The ability to switch between different lifestyles allows bacterial pathogens to thrive in diverse ecological niches1,2. However, a molecular understanding of their lifestyle changes within the human host is lacking. Here, by directly examining bacterial gene expression in human-derived samples, we discover a gene that orchestrates the transition between chronic and acute infection in the opportunistic pathogen Pseudomonas aeruginosa. The expression level of this gene, here named sicX, is the highest of the P. aeruginosa genes expressed in human chronic wound and cystic fibrosis infections, but it is expressed at extremely low levels during standard laboratory growth. We show that sicX encodes a small RNA that is strongly induced by low-oxygen conditions and post-transcriptionally regulates anaerobic ubiquinone biosynthesis. Deletion of sicX causes P. aeruginosa to switch from a chronic to an acute lifestyle in multiple mammalian models of infection. Notably, sicX is also a biomarker for this chronic-to-acute transition, as it is the most downregulated gene when a chronic infection is dispersed to cause acute septicaemia. This work solves a decades-old question regarding the molecular basis underlying the chronic-to-acute switch in P. aeruginosa and suggests oxygen as a primary environmental driver of acute lethality.


Asunto(s)
Enfermedad Aguda , Enfermedad Crónica , Genes Bacterianos , Oxígeno , Infecciones por Pseudomonas , Pseudomonas aeruginosa , ARN Bacteriano , Animales , Humanos , Oxígeno/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Infecciones por Pseudomonas/complicaciones , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/patología , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Fibrosis Quística/microbiología , Heridas y Lesiones/microbiología , Ubiquinona/biosíntesis , Anaerobiosis , Genes Bacterianos/genética , Sepsis/complicaciones , Sepsis/microbiología
6.
Nat Rev Microbiol ; 20(10): 573-574, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36104421
7.
Front Cell Infect Microbiol ; 12: 898796, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909964

RESUMEN

Calprotectin is a transition metal chelating protein of the innate immune response known to exert nutritional immunity upon microbial infection. It is abundantly released during inflammation and is therefore found at sites occupied by pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus. The metal limitation induced by this protein has previously been shown to mediate P. aeruginosa and S. aureus co-culture. In addition to the transition metal sequestration role of calprotectin, it has also been shown to have metal-independent antimicrobial activity via direct cell contact. Therefore, we sought to assess the impact of this protein on the biofilm architecture of P. aeruginosa and S. aureus in monomicrobial and polymicrobial culture. The experiments described in this report reveal novel aspects of calprotectin's interaction with biofilm communities of P. aeruginosa and S. aureus discovered using scanning electron microscopy and confocal laser scanning microscopy. Our results indicate that calprotectin can interact with microbial cells by stimulating encapsulation in mesh-like structures. This physical interaction leads to compositional changes in the biofilm extracellular polymeric substance (EPS) in both P. aeruginosa and S. aureus.


Asunto(s)
Biopelículas , Inmunidad Innata , Complejo de Antígeno L1 de Leucocito , Pseudomonas aeruginosa , Staphylococcus aureus , Antibacterianos/inmunología , Antibacterianos/farmacología , Matriz Extracelular de Sustancias Poliméricas/genética , Matriz Extracelular de Sustancias Poliméricas/inmunología , Humanos , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Complejo de Antígeno L1 de Leucocito/genética , Complejo de Antígeno L1 de Leucocito/inmunología , Fagocitosis , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/inmunología , Staphylococcus aureus/genética , Staphylococcus aureus/inmunología
8.
NPJ Biofilms Microbiomes ; 8(1): 49, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705574

RESUMEN

A new technique was used to measure the viscoelasticity of in vivo Pseudomonas aeruginosa biofilms. This was done through ex vivo microrheology measurements of in vivo biofilms excised from mouse wound beds. To our knowledge, this is the first time that the mechanics of in vivo biofilms have been measured. In vivo results are then compared to typical in vitro measurements. Biofilms grown in vivo are more relatively elastic than those grown in a wound-like medium in vitro but exhibited similar compliance. Using various genetically mutated P. aeruginosa strains, it is observed that the contributions of the exopolysaccharides Pel, Psl, and alginate to biofilm viscoelasticity were different for the biofilms grown in vitro and in vivo. In vitro experiments with collagen containing medium suggest this likely arises from the incorporation of host material, most notably collagen, into the matrix of the biofilm when it is grown in vivo. Taken together with earlier studies that examined the in vitro effects of collagen on mechanical properties, we conclude that collagen may, in some cases, be the dominant contributor to biofilm viscoelasticity in vivo.


Asunto(s)
Biopelículas , Pseudomonas aeruginosa , Animales , Colágeno/metabolismo , Colágeno/farmacología , Ratones , Polisacáridos Bacterianos/metabolismo , Pseudomonas aeruginosa/fisiología , Sustancias Viscoelásticas , Heridas y Lesiones/microbiología
9.
Front Cell Infect Microbiol ; 12: 835754, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463635

RESUMEN

Biofilms are the cause of most chronic bacterial infections. Living within the biofilm matrix, which is made of extracellular substances, including polysaccharides, proteins, eDNA, lipids and other molecules, provides microorganisms protection from antimicrobials and the host immune response. Exopolysaccharides are major structural components of bacterial biofilms and are thought to be vital to numerous aspects of biofilm formation and persistence, including adherence to surfaces, coherence with other biofilm-associated cells, mechanical stability, protection against desiccation, binding of enzymes, and nutrient acquisition and storage, as well as protection against antimicrobials, host immune cells and molecules, and environmental stressors. However, the contribution of specific exopolysaccharide types to the pathogenesis of biofilm infection is not well understood. In this study we examined whether the absence of the two main exopolysaccharides produced by the biofilm former Pseudomonas aeruginosa would affect wound infection in a mouse model. Using P. aeruginosa mutants that do not produce the exopolysaccharides Pel and/or Psl we observed that the severity of wound infections was not grossly affected; both the bacterial load in the wounds and the wound closure rates were unchanged. However, the size and spatial distribution of biofilm aggregates in the wound tissue were significantly different when Pel and Psl were not produced, and the ability of the mutants to survive antibiotic treatment was also impaired. Taken together, our data suggest that while the production of Pel and Psl do not appear to affect P. aeruginosa pathogenesis in mouse wound infections, they may have an important implication for bacterial persistence in vivo.


Asunto(s)
Infecciones por Pseudomonas , Infección de Heridas , Animales , Proteínas Bacterianas/genética , Biopelículas , Ratones , Polisacáridos Bacterianos/metabolismo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética
10.
Biomater Sci ; 10(3): 633-653, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34994371

RESUMEN

The ever-growing threat of new and existing infectious diseases in combination with antimicrobial resistance requires the need for innovative and effective forms of drug delivery. Optimal drug delivery systems for existing and newly developed antimicrobials can enhance drug bioavailability, enable site-specific drug targeting, and overcome current limitations of drug formulations such as short elimination half-lives, poor drug solubility, and undesirable side effects. Nanoemulsions (NE) consist of nanometer-sized droplets stabilized by emulsifiers and are typically more stable and permeable due to their smaller particle sizes and higher surface area compared to conventional emulsions. NE have been identified as a promising means of antimicrobial delivery due to their intrinsic antimicrobial properties, ability to increase drug solubility, stability, bioavailability, organ and cellular targeting potentials, capability of targeting biofilms, and potential to overcome antimicrobial resistance. Herein, we discuss non-drug loaded essential oil-based NE that can confer antimicrobial actions through predominantly physical or biochemical mechanisms without drug payloads. We also describe drug-loaded NE for enhanced antimicrobial efficacy by augmenting the potency of existing antimicrobials. We highlight the versatility of NE to be administered through multiple different routes (oral, parenteral, dermal, transdermal, pulmonary, nasal, ocular, and rectal). We summarize recent advances in the clinical translation of antimicrobial NE and shed light on future development of effective antimicrobial therapy to combat infectious diseases.


Asunto(s)
Antiinfecciosos , Nanopartículas , Aceites Volátiles , Antiinfecciosos/farmacología , Sistemas de Liberación de Medicamentos , Emulsiones , Tamaño de la Partícula , Solubilidad
11.
Lancet Infect Dis ; 22(3): e88-e92, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34506737

RESUMEN

Standard doses of antibiotics do not efficiently treat chronic infections of the soft tissue and bone. In this Personal View, we advocate for improving treatment of these infections by taking the infectious microenvironment into account. The infectious microenvironment can cause sensitive bacteria to lose their susceptibility to antibiotics that are effective in standard laboratory susceptibility testing. We propose that bacteria behave substantially different in standard laboratory conditions than they do in actual infections. The infectious microenvironment could impose changes in growth and metabolic activity that result in increased protection against antibiotics. Therefore, we advocate that improved antibiotic treatment of chronic infection is achievable when antibiotics are recommended on the basis of susceptibility testing in relevant in vitro conditions that resemble actual infectious microenvironments. We recommend establishing knowledge of the relevant conditions of the chemical and physical composition of the infectious microenvironment. Recent advances in RNA sequencing, metabolomics, and microscopy have made it possible for the characterisation of the microenvironment of infections and to validate the clinical relevance of in vitro conditions to actual infections.


Asunto(s)
Antibacterianos , Bacterias , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Humanos
12.
Mol Ecol Resour ; 22(3): 1029-1042, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34669257

RESUMEN

Microbes interact in natural communities in a spatially structured manner, particularly in biofilms and polymicrobial infections. While next generation sequencing approaches provide powerful insights into diversity, metabolic capacity, and mutational profiles of these communities, they generally fail to recover in situ spatial proximity between distinct genotypes in the interactome. Hi-C is a promising method that has assisted in analysing complex microbiomes, by creating chromatin cross-links in cells, that aid in identifying adjacent DNA, to improve de novo assembly. This study explored a modified Hi-C approach involving an initial lysis phase prior to DNA cross-linking, to test whether adjacent cell chromatin can be cross-linked, anticipating that this could provide a new avenue for study of spatial-mutational dynamics in structured microbial communities. An artificial polymicrobial mixture of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli was lysed for 1-18 h, then prepared for Hi-C. A murine biofilm infection model was treated with sonication, mechanical lysis, or chemical lysis before Hi-C. Bioinformatic analyses of resulting Hi-C interspecies chromatin links showed that while microbial species differed from one another, generally lysis significantly increased links between species and increased the distance of Hi-C links within species, while also increasing novel plasmid-chromosome links. The success of this modified lysis-Hi-C protocol in creating extracellular DNA links is a promising first step toward a new lysis-Hi-C based method to recover genotypic microgeography in polymicrobial communities, with potential future applications in diseases with localized resistance, such as cystic fibrosis lung infections and chronic diabetic ulcers.


Asunto(s)
Fibrosis Quística , Pseudomonas aeruginosa , Animales , Biopelículas , Ratones , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus
13.
Biofilm ; 3: 100061, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34825176

RESUMEN

Novel anti-biofilm and dispersal agents are currently being investigated in an attempt to combat biofilm-associated wound infections. Glycoside hydrolases (GHs) are enzymes that hydrolyze the glycosidic bonds between sugars, such as those found within the exopolysaccharides of the biofilm matrix. Previous studies have shown that GHs can weaken the matrix, inducing bacterial dispersal, and improving antibiotic clearance. Yet, the number of GH enzymes that have been examined for potential therapeutic effects is limited. In this study, we screened sixteen GHs for their ability to disperse mono-microbial and polymicrobial biofilms grown in different environments. Six GHs, α-amylase (source: A. oryzae), alginate lyase (source: various algae), pectinase (source: Rhizopus sp.), amyloglucosidase (source: A. niger), inulinase (source: A. niger), and xylanase (source: A. oryzae), exhibited the highest dispersal efficacy in vitro. Two GHs, α-amylase (source: Bacillus sp.) and cellulase (source: A. niger), used in conjunction with meropenem demonstrated infection clearing ability in a mouse wound model. GHs were also effective in improving antibiotic clearance in diabetic mice. To examine their safety, we screened the GHs for toxicity in cell culture. Overall, there was an inverse relationship between enzyme exposure time and cellular toxicity, with twelve out of sixteen GHs demonstrating some level of toxicity in cell culture. However, only one GH exhibited harmful effects in mice. These results further support the ability of GHs to improve antibiotic clearance of biofilm-associated infections and help lay a foundation for establishing GHs as therapeutic agents for chronic wound infections.

14.
J Vis Exp ; (174)2021 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-34424229

RESUMEN

Biofilm-related infections are implicated in a wide array of chronic conditions such as non-healing diabetic foot ulcers, chronic sinusitis, reoccurring otitis media, and many more. Microbial cells within these infections are protected by an extracellular polymeric substance (EPS), which can prevent antibiotics and host immune cells from clearing the infection. To overcome this obstacle, investigators have begun developing dispersal agents as potential therapeutics. These agents target various components within the biofilm EPS, weakening the structure, and initiating dispersal of the bacteria, which can theoretically improve antibiotic potency and immune clearance. To determine the efficacy of dispersal agents for wound infections, we have developed protocols that measure biofilm dispersal both ex vivo and in vivo. We use a mouse surgical excision model that has been well-described to create biofilm-associated chronic wound infections. To monitor dispersal in vivo, we infect the wounds with bacterial strains that express luciferase. Once mature infections have established, we irrigate the wounds with a solution containing enzymes that degrade components of the biofilm EPS. We then monitor the location and intensity of the luminescent signal in the wound and filtering organs to provide information about the level of dispersal achieved. For ex vivo analysis of biofilm dispersal, infected wound tissue is submerged in biofilm-degrading enzyme solution, after which the bacterial load remaining in the tissue, versus the bacterial load in solution, is assessed. Both protocols have strengths and weaknesses and can be optimized to help accurately determine the efficacy of dispersal treatments.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Infección de Heridas , Animales , Antibacterianos/uso terapéutico , Biopelículas , Ratones , Pseudomonas aeruginosa
15.
Soft Matter ; 17(25): 6225-6237, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34109345

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that causes thousands of deaths every year in part due to its ability to form biofilms composed of bacteria embedded in a matrix of self-secreted extracellular polysaccharides (EPS), e-DNA, and proteins. In chronic wounds, biofilms are exposed to the host extracellular matrix, of which collagen is a major component. How bacterial EPS interacts with host collagen and whether this interaction affects biofilm viscoelasticity is not well understood. Since physical disruption of biofilms is often used in their removal, knowledge of collagen's effects on biofilm viscoelasticity may enable new treatment strategies that are better tuned to biofilms growing in host environments. In this work, biofilms are grown in the presence of different concentrations of collagen that mimic in vivo conditions. In order to explore collagen's interaction with EPS, nine strains of P. aeruginosa with different patterns of EPS production were used to grow biofilms. Particle tracking microrheology was used to characterize the mechanical development of biofilms over two days. Collagen is found to decrease biofilm compliance and increase relative elasticity regardless of the EPS present in the system. However, this effect is minimized when biofilms overproduce EPS. Collagen appears to become a de facto component of the EPS, through binding to bacteria or physical entanglement.


Asunto(s)
Biopelículas , Pseudomonas aeruginosa , Colágeno , Polisacáridos Bacterianos , Viscosidad
16.
Int Wound J ; 18(5): 626-638, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33565263

RESUMEN

Wound biofilms must be identified to target disruption and bacterial eradication but are challenging to detect with standard clinical assessment. This study tested whether bacterial fluorescence imaging could detect porphyrin-producing bacteria within a biofilm using well-established in vivo models. Mouse wounds were inoculated on Day 0 with planktonic bacteria (n = 39, porphyrin-producing and non-porphyrin-producing species, 107  colony forming units (CFU)/wound) or with polymicrobial biofilms (n = 16, 3 biofilms per mouse, each with 1:1:1 parts Staphylococcus aureus/Escherichia coli/Enterobacter cloacae, 107  CFU/biofilm) that were grown in vitro. Mouse wounds inoculated with biofilm underwent fluorescence imaging up to Day 4 or 5. Wounds were then excised and sent for microbiological analysis. Bacteria-matrix interaction was assessed with scanning electron microscopy (SEM) and histopathology. A total of 48 hours after inoculation with planktonic bacteria or biofilm, red fluorescence was readily detected in wounds; red fluorescence intensified up to Day 4. Red fluorescence from biofilms persisted in excised wound tissue post-wash. SEM and histopathology confirmed bacteria-matrix interaction. This pre-clinical study is the first to demonstrate the fluorescence detection of bacterial biofilm in vivo using a point-of-care wound imaging device. These findings have implications for clinicians targeting biofilm and may facilitate improved visualisation and removal of biofilms.


Asunto(s)
Infección de Heridas , Animales , Bacterias , Biopelículas , Ratones , Imagen Óptica , Sistemas de Atención de Punto , Infección de Heridas/diagnóstico
17.
Analyst ; 145(24): 8050-8058, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33073791

RESUMEN

Proteases play an essential role in the four sequential but overlapping phases of wound healing: hemostasis, inflammation, proliferation, and remodeling. In chronic wounds, excessive protease secretion damages the newly formed extracellular matrix, thereby delaying or preventing the normal healing process. Peptide-based fluorogenic sensors provide a visual platform to sense and analyze protease activity through changes in the fluorescence intensity. Here, we have developed an integrated microfluidic chip coated with multilayered fluorogenic nanofilms that can directly monitor protease activity. Fluorogenic protease sensors were chemically conjugated to polymer films coated on the surface of parallel microfluidic channels. Capillary flow layer-by-layer (CF-LbL) was used for film assembly and combined with subsequent sensor modification to establish a novel platform sensing technology. The benefits of our platform include facile fabrication and processing, controllable film nanostructure, small sample volume, and high sensitivity. We observed increased fluorescence of the LbL nanofilms when they were exposed to model recombinant proteases, confirming their responsiveness to protease activity. Increases in the nanofilms' fluorescence intensity were also observed during incubation with liquid extracted from murine infected wounds, demonstrating the potential of these films to provide real-time, in situ information about protease activity levels.


Asunto(s)
Nanoestructuras , Animales , Matriz Extracelular , Ratones , Péptido Hidrolasas , Polímeros , Cicatrización de Heridas
18.
NPJ Biofilms Microbiomes ; 6(1): 55, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247129

RESUMEN

Staphylococcus aureus is a prominent etiological agent of suppurative abscesses. In principle, abscess formation and purulent exudate are classical physiological features of healing and tissue repair. However, S. aureus deploys two coagulases that can usurp this classical host response and form distinct abscess lesions. Here, we establish that during coinfection with coagulase producers and non-producers, coagulases are shared public goods that contribute to staphylococcal persistence, abscess formation, and disease progression. Coagulase-negative mutants that do not produce the public goods themselves are able to exploit those cooperatively secreted by producers and thereby thrive during coinfection at the expense of others. This study shows the importance of social interactions among pathogens concerning clinical outcomes.


Asunto(s)
Absceso/microbiología , Coagulasa/genética , Infecciones Estafilocócicas/patología , Staphylococcus aureus/patogenicidad , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Coagulasa/metabolismo , Modelos Animales de Enfermedad , Eliminación de Gen , Humanos , Ratones , Interacciones Microbianas , Mutación , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
19.
Sci Rep ; 10(1): 16190, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004810

RESUMEN

In this study, we report a microfluidic device for the whole-life culture of the nematode Caenorhabditis elegans that allows the scoring of animal survival and health measures. This device referred to as the NemaLife chip features: (1) an optimized micropillar arena in which animals can crawl, (2) sieve channels that separate progeny and prevent the loss of adults from the arena during culture maintenance, and (3) ports that allow rapid accessibility for feeding the adult-only population and introducing reagents as needed. The pillar arena geometry was optimized to accommodate the growing body size during culture and emulate the body gait and locomotion of animals reared on agar. Likewise, feeding protocols were optimized to recapitulate longevity outcomes typical of standard plate growth. Key benefits of the NemaLife Chip include eliminating the need to perform repeated manual transfers of adults during survival assays, negating the need for progeny-blocking chemical interventions, and avoiding the swim-induced stress across lifespan in animals reared in liquid. We also show that the culture of animals in pillar-less microfluidic chambers reduces lifespan and introduces physiological stress by increasing the occurrence of age-related vulval integrity disorder. We validated our pillar-based device with longevity analyses of classical aging mutants (daf-2, age-1, eat-2, and daf-16) and animals subjected to RNAi knockdown of age-related genes (age-1 and daf-16). We also showed that healthspan measures such as pharyngeal pumping and tap-induced stimulated reversals can be scored across the lifespan in the NemaLife chip. Overall, the capacity to generate reliable lifespan and physiological data underscores the potential of the NemaLife chip to accelerate healthspan and lifespan investigations in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Dispositivos Laboratorio en un Chip/normas , Longevidad , Microfluídica/instrumentación , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Microfluídica/métodos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
20.
Sci Rep ; 10(1): 17513, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060666

RESUMEN

The rise in antimicrobial resistance has prompted the development of alternatives to combat bacterial infections. Bald's eyesalve, a remedy used in the Early Medieval period, has previously been shown to have efficacy against Staphylococcus aureus in in vitro and in vivo models of chronic wounds. However, the safety profile of Bald's eyesalve has not yet been demonstrated, and this is vital before testing in humans. Here, we determined the safety potential of Bald's eyesalve using in vitro, ex vivo, and in vivo models representative of skin or eye infections. We also confirmed that Bald's eyesalve is active against an important eye pathogen, Neisseria gonorrhoeae. Low levels of cytotoxicity were observed in eyesalve-treated cell lines representative of skin and immune cells. Results from a bovine corneal opacity and permeability test demonstrated slight irritation to the cornea that resolved within 10 min. The slug mucosal irritation assay revealed that a low level of mucus was secreted by slugs indicating moderate mucosal irritation. We obtained promising results from mouse wound closure experiments; no visible signs of irritation or inflammation were observed. Our results suggest that Bald's eyesalve could be tested further on human volunteers to assess safety for topical application against bacterial infections.


Asunto(s)
Productos Biológicos/farmacología , Córnea/efectos de los fármacos , Neisseria gonorrhoeae/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Animales , Antibacterianos/farmacología , Bilis , Productos Biológicos/efectos adversos , Bovinos , Supervivencia Celular , Evaluación Preclínica de Medicamentos , Femenino , Ajo , Gonorrea/tratamiento farmacológico , Humanos , Irritantes , Queratinocitos/efectos de los fármacos , Ratones , Cebollas , Seguridad del Paciente , Permeabilidad , Infecciones Estafilocócicas/tratamiento farmacológico , Células THP-1 , Vino , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...