Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pediatr Gastroenterol Nutr ; 73(4): 499-506, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34238825

RESUMEN

OBJECTIVES: Polyethylene Glycol 3350 (PEG3350) is a laxative commonly used to treat constipation in children. The Food and Drug Administration has received reports of increased anxiety, aggression, and obsessive--compulsive behaviors in children administered PEG3350. Thus, we assessed whether daily administration of PEG3350 leads to anxiety-like behavior in mice. METHODS: Outbred CD-1 IGS mice were administered either a high or a low dose of PEG3350 via daily oral gavage for 2 weeks. As a laxative comparison and control, additional mice were given a high or low dose of magnesium citrate or vehicle (water). Weight and stool consistency were assessed after each gavage to determine laxative effectiveness. Anxiety-like behaviors were assessed using light/dark, open field, and elevated plus maze (EPM) tests at baseline, after 2 weeks of daily gavage, and after a 2 week washout in experiment 1, and after 2 weeks of daily gavage in experiment 2. Stool samples were collected for microbiome analysis in experiment 2 at baseline, after 2 weeks of daily gavage, and after 2 weeks washout. RESULTS: PEG3350 and magnesium citrate significantly changed stool consistency, as well as microbiome alpha and beta diversity. Anxiety-like behaviors were not, however, different in mice administered low or high doses of PEG3350 or magnesium citrate. CONCLUSIONS: Although changes in stool consistency and the gut microbiome occurred, administration of PEG3350 did not alter anxiety-like behaviors.


Asunto(s)
Microbioma Gastrointestinal , Laxativos , Animales , Ratones , Polietilenglicoles , Resultado del Tratamiento
2.
Mol Biol Evol ; 36(12): 2922-2924, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31411700

RESUMEN

Comparing newly obtained and previously known nucleotide and amino-acid sequences underpins modern biological research. BLAST is a well-established tool for such comparisons but is challenging to use on new data sets. We combined a user-centric design philosophy with sustainable software development approaches to create Sequenceserver, a tool for running BLAST and visually inspecting BLAST results for biological interpretation. Sequenceserver uses simple algorithms to prevent potential analysis errors and provides flexible text-based and visual outputs to support researcher productivity. Our software can be rapidly installed for use by individuals or on shared servers.


Asunto(s)
Biología Computacional/métodos , Técnicas Genéticas , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...