Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 242(3): 947-959, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38509854

RESUMEN

Many plant populations exhibit synchronous flowering, which can be advantageous in plant reproduction. However, molecular mechanisms underlying flowering synchrony remain poorly understood. We studied the role of known vernalization-response and flower-promoting pathways in facilitating synchronized flowering in Arabidopsis thaliana. Using the vernalization-responsive Col-FRI genotype, we experimentally varied germination dates and daylength among individuals to test flowering synchrony in field and controlled environments. We assessed the activity of flowering regulation pathways by measuring gene expression across leaves produced at different time points during development and through a mutant analysis. We observed flowering synchrony across germination cohorts in both environments and discovered a previously unknown process where flower-promoting and repressing signals are differentially regulated between leaves that developed under different environmental conditions. We hypothesized this mechanism may underlie synchronization. However, our experiments demonstrated that signals originating from sources other than leaves must also play a pivotal role in synchronizing flowering time, especially in germination cohorts with prolonged growth before vernalization. Our results suggest flowering synchrony is promoted by a plant-wide integration of flowering signals across leaves and among organs. To summarize our findings, we propose a new conceptual model of vernalization-induced flowering synchrony and provide suggestions for future research in this field.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vernalización , Flores/fisiología , Reproducción , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo
2.
Front Genet ; 14: 1269255, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075684

RESUMEN

The availability of high-dimensional genomic data and advancements in genome-based prediction models (GP) have revolutionized and contributed to accelerated genetic gains in soybean breeding programs. GP-based sparse testing is a promising concept that allows increasing the testing capacity of genotypes in environments, of genotypes or environments at a fixed cost, or a substantial reduction of costs at a fixed testing capacity. This study represents the first attempt to implement GP-based sparse testing in soybeans by evaluating different training set compositions going from non-overlapped RILs until almost the other extreme of having same set of genotypes observed across environments for different training set sizes. A total of 1,755 recombinant inbred lines (RILs) tested in nine environments were used in this study. RILs were derived from 39 bi-parental populations of the Soybean Nested Association Mapping (NAM) project. The predictive abilities of various models and training set sizes and compositions were investigated. Training compositions included a range of ratios of overlapping (O-RILs) and non-overlapping (NO-RILs) RILs across environments, as well as a methodology to maximize or minimize the genetic diversity in a fixed-size sample. Reducing the training set size compromised predictive ability in most training set compositions. Overall, maximizing the genetic diversity within the training set and the inclusion of O-RILs increased prediction accuracy given a fixed training set size; however, the most complex model was less affected by these factors. More testing environments in the early stages of the breeding pipeline can provide a more comprehensive assessment of genotype stability and adaptation which are fundamental for the precise selection of superior genotypes adapted to a wide range of environments.

3.
Science ; 382(6674): eadg8940, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38033071

RESUMEN

The origins of maize were the topic of vigorous debate for nearly a century, but neither the current genetic model nor earlier archaeological models account for the totality of available data, and recent work has highlighted the potential contribution of a wild relative, Zea mays ssp. mexicana. Our population genetic analysis reveals that the origin of modern maize can be traced to an admixture between ancient maize and Zea mays ssp. mexicana in the highlands of Mexico some 4000 years after domestication began. We show that variation in admixture is a key component of maize diversity, both at individual loci and for additive genetic variation underlying agronomic traits. Our results clarify the origin of modern maize and raise new questions about the anthropogenic mechanisms underlying dispersal throughout the Americas.


Asunto(s)
Productos Agrícolas , Domesticación , Hibridación Genética , Zea mays , México , Fenotipo , Zea mays/genética , Variación Genética , Productos Agrícolas/genética
4.
Genetics ; 223(3)2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36529897

RESUMEN

Large-scale phenotype data are expected to increase the accuracy of genome-wide prediction and the power of genome-wide association analyses. However, genomic analyses of high-dimensional, highly correlated traits are challenging. We developed a method for implementing high-dimensional Bayesian multivariate regression to simultaneously analyze genetic variants underlying thousands of traits. As a demonstration, we implemented the BayesC prior in the R package MegaLMM. Applied to Genomic Prediction, MegaBayesC effectively integrated hyperspectral reflectance data from 620 hyperspectral wavelengths to improve the accuracy of genetic value prediction on grain yield in a wheat dataset. Applied to Genome-Wide Association Studies, we used simulations to show that MegaBayesC can accurately estimate the effect sizes of QTL across a range of genetic architectures and causes of correlations among traits. To apply MegaBayesC to a realistic scenario involving whole-genome marker data, we developed a 2-stage procedure involving a preliminary step of candidate marker selection prior to multivariate regression. We then used MegaBayesC to identify genetic associations with flowering time in Arabidopsis thaliana, leveraging expression data from 20,843 genes. MegaBayesC selected 15 single nucleotide polymorphisms as important for flowering time, with 13 located within 100 kb of known flowering-time related genes, a higher validation rate than achieved by a single-stage analysis using only the flowering time data itself. These results demonstrate that MegaBayesC can efficiently and effectively leverage high-dimensional phenotypes in genetic analyses.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Teorema de Bayes , Fenotipo , Genómica/métodos , Polimorfismo de Nucleótido Simple , Genotipo
5.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36498886

RESUMEN

Recent advances in maize doubled haploid (DH) technology have enabled the development of large numbers of DH lines quickly and efficiently. However, testing all possible hybrid crosses among DH lines is a challenge. Phenotyping haploid progenitors created during the DH process could accelerate the selection of DH lines. Based on phenotypic and genotypic data of a DH population and its corresponding haploids, we compared phenotypes and estimated genetic correlations between the two populations, compared genomic prediction accuracy of multi-trait models against conventional univariate models within the DH population, and evaluated whether incorporating phenotypic data from haploid lines into a multi-trait model could better predict performance of DH lines. We found significant phenotypic differences between DH and haploid lines for nearly all traits; however, their genetic correlations between populations were moderate to strong. Furthermore, a multi-trait model taking into account genetic correlations between traits in the single-environment trial or genetic covariances in multi-environment trials can significantly increase genomic prediction accuracy. However, integrating information of haploid lines did not further improve our prediction. Our findings highlight the superiority of multi-trait models in predicting performance of DH lines in maize breeding, but do not support the routine phenotyping and selection on haploid progenitors of DH lines.


Asunto(s)
Fitomejoramiento , Zea mays , Zea mays/genética , Haploidia , Fenotipo , Genotipo
6.
Mol Biol Evol ; 39(11)2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36327321

RESUMEN

Maize is a staple food of smallholder farmers living in highland regions up to 4,000 m above sea level worldwide. Mexican and South American highlands are two major highland maize growing regions, and population genetic data suggest the maize's adaptation to these regions occurred largely independently, providing a case study for convergent evolution. To better understand the mechanistic basis of highland adaptation, we crossed maize landraces from 108 highland and lowland sites of Mexico and South America with the inbred line B73 to produce F1 hybrids and grew them in both highland and lowland sites in Mexico. We identified thousands of genes with divergent expression between highland and lowland populations. Hundreds of these genes show patterns of convergent evolution between Mexico and South America. To dissect the genetic architecture of the divergent gene expression, we developed a novel allele-specific expression analysis pipeline to detect genes with divergent functional cis-regulatory variation between highland and lowland populations. We identified hundreds of genes with divergent cis-regulation between highland and lowland landrace alleles, with 20 in common between regions, further suggesting convergence in the genes underlying highland adaptation. Further analyses suggest multiple mechanisms contribute to this convergence in gene regulation. Although the vast majority of evolutionary changes associated with highland adaptation were region specific, our findings highlight an important role for convergence at the gene expression and gene regulation levels as well.


Asunto(s)
Adaptación Fisiológica , Zea mays , Zea mays/genética , Alelos , Adaptación Fisiológica/genética , Genética de Población , Aclimatación
7.
Genetics ; 222(2)2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35961029

RESUMEN

The interaction of evolutionary processes to determine quantitative genetic variation has implications for contemporary and future phenotypic evolution, as well as for our ability to detect causal genetic variants. While theoretical studies have provided robust predictions to discriminate among competing models, empirical assessment of these has been limited. In particular, theory highlights the importance of pleiotropy in resolving observations of selection and mutation, but empirical investigations have typically been limited to few traits. Here, we applied high-dimensional Bayesian Sparse Factor Genetic modeling to gene expression datasets in 2 species, Drosophila melanogaster and Drosophila serrata, to explore the distributions of genetic variance across high-dimensional phenotypic space. Surprisingly, most of the heritable trait covariation was due to few lines (genotypes) with extreme [>3 interquartile ranges (IQR) from the median] values. Intriguingly, while genotypes extreme for a multivariate factor also tended to have a higher proportion of individual traits that were extreme, we also observed genotypes that were extreme for multivariate factors but not for any individual trait. We observed other consistent differences between heritable multivariate factors with outlier lines vs those factors without extreme values, including differences in gene functions. We use these observations to identify further data required to advance our understanding of the evolutionary dynamics and nature of standing genetic variation for quantitative traits.


Asunto(s)
Drosophila , Modelos Genéticos , Animales , Teorema de Bayes , Drosophila/genética , Drosophila melanogaster/genética , Variación Genética , Fenotipo , Selección Genética
8.
Proc Natl Acad Sci U S A ; 119(27): e2100036119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35771940

RESUMEN

Native Americans domesticated maize (Zea mays ssp. mays) from lowland teosinte parviglumis (Zea mays ssp. parviglumis) in the warm Mexican southwest and brought it to the highlands of Mexico and South America where it was exposed to lower temperatures that imposed strong selection on flowering time. Phospholipids are important metabolites in plant responses to low-temperature and phosphorus availability and have been suggested to influence flowering time. Here, we combined linkage mapping with genome scans to identify High PhosphatidylCholine 1 (HPC1), a gene that encodes a phospholipase A1 enzyme, as a major driver of phospholipid variation in highland maize. Common garden experiments demonstrated strong genotype-by-environment interactions associated with variation at HPC1, with the highland HPC1 allele leading to higher fitness in highlands, possibly by hastening flowering. The highland maize HPC1 variant resulted in impaired function of the encoded protein due to a polymorphism in a highly conserved sequence. A meta-analysis across HPC1 orthologs indicated a strong association between the identity of the amino acid at this position and optimal growth in prokaryotes. Mutagenesis of HPC1 via genome editing validated its role in regulating phospholipid metabolism. Finally, we showed that the highland HPC1 allele entered cultivated maize by introgression from the wild highland teosinte Zea mays ssp. mexicana and has been maintained in maize breeding lines from the Northern United States, Canada, and Europe. Thus, HPC1 introgressed from teosinte mexicana underlies a large metabolic QTL that modulates phosphatidylcholine levels and has an adaptive effect at least in part via induction of early flowering time.


Asunto(s)
Adaptación Fisiológica , Flores , Interacción Gen-Ambiente , Fosfatidilcolinas , Fosfolipasas A1 , Proteínas de Plantas , Zea mays , Alelos , Mapeo Cromosómico , Flores/genética , Flores/metabolismo , Genes de Plantas , Ligamiento Genético , Fosfatidilcolinas/metabolismo , Fosfolipasas A1/clasificación , Fosfolipasas A1/genética , Fosfolipasas A1/metabolismo , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética , Zea mays/crecimiento & desarrollo
9.
Evol Appl ; 15(5): 817-837, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35603032

RESUMEN

Populations are locally adapted when they exhibit higher fitness than foreign populations in their native habitat. Maize landrace adaptations to highland and lowland conditions are of interest to researchers and breeders. To determine the prevalence and strength of local adaptation in maize landraces, we performed a reciprocal transplant experiment across an elevational gradient in Mexico. We grew 120 landraces, grouped into four populations (Mexican Highland, Mexican Lowland, South American Highland, South American Lowland), in Mexican highland and lowland common gardens and collected phenotypes relevant to fitness and known highland-adaptive traits such as anthocyanin pigmentation and macrohair density. 67k DArTseq markers were generated from field specimens to allow comparisons between phenotypic patterns and population genetic structure. We found phenotypic patterns consistent with local adaptation, though these patterns differ between the Mexican and South American populations. Quantitative trait differentiation (Q ST) was greater than neutral allele frequency differentiation (F ST) for many traits, signaling directional selection between pairs of populations. All populations exhibited higher fitness metric values when grown at their native elevation, and Mexican landraces had higher fitness than South American landraces when grown in these Mexican sites. As environmental distance between landraces' native collection sites and common garden sites increased, fitness values dropped, suggesting landraces are adapted to environmental conditions at their natal sites. Correlations between fitness and anthocyanin pigmentation and macrohair traits were stronger in the highland site than the lowland site, supporting their status as highland-adaptive. These results give substance to the long-held presumption of local adaptation of New World maize landraces to elevation and other environmental variables across North and South America.

10.
G3 (Bethesda) ; 12(3)2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35134181

RESUMEN

Genotype-by-environment interactions are a significant challenge for crop breeding as well as being important for understanding the genetic basis of environmental adaptation. In this study, we analyzed genotype-by-environment interactions in a maize multiparent advanced generation intercross population grown across 5 environments. We found that genotype-by-environment interactions contributed as much as genotypic effects to the variation in some agronomically important traits. To understand how genetic correlations between traits change across environments, we estimated the genetic variance-covariance matrix in each environment. Changes in genetic covariances between traits across environments were common, even among traits that show low genotype-by-environment variance. We also performed a genome-wide association study to identify markers associated with genotype-by-environment interactions but found only a small number of significantly associated markers, possibly due to the highly polygenic nature of genotype-by-environment interactions in this population.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Interacción Gen-Ambiente , Genotipo , Fenotipo , Fitomejoramiento , Zea mays/genética
11.
G3 (Bethesda) ; 12(3)2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35100382

RESUMEN

The search for quantitative trait loci that explain complex traits such as yield and drought tolerance has been ongoing in all crops. Methods such as biparental quantitative trait loci mapping and genome-wide association studies each have their own advantages and limitations. Multiparent advanced generation intercross populations contain more recombination events and genetic diversity than biparental mapping populations and are better able to estimate effect sizes of rare alleles than association mapping populations. Here, we discuss the results of using a multiparent advanced generation intercross population of doubled haploid maize lines created from 16 diverse founders to perform quantitative trait loci mapping. We compare 3 models that assume bi-allelic, founder, and ancestral haplotype allelic states for quantitative trait loci. The 3 methods have differing power to detect quantitative trait loci for a variety of agronomic traits. Although the founder approach finds the most quantitative trait loci, all methods are able to find unique quantitative trait loci, suggesting that each model has advantages for traits with different genetic architectures. A closer look at a well-characterized flowering time quantitative trait loci, qDTA8, which contains vgt1, highlights the strengths and weaknesses of each method and suggests a potential epistatic interaction. Overall, our results reinforce the importance of considering different approaches to analyzing genotypic datasets, and shows the limitations of binary SNP data for identifying multiallelic quantitative trait loci.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Alelos , Mapeo Cromosómico/métodos , Cruzamientos Genéticos
12.
Theor Appl Genet ; 134(12): 4043-4054, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34643760

RESUMEN

KEY MESSAGE: Integration of multi-omics data improved prediction accuracies of oat agronomic and seed nutritional traits in multi-environment trials and distantly related populations in addition to the single-environment prediction. Multi-omics prediction has been shown to be superior to genomic prediction with genome-wide DNA-based genetic markers (G) for predicting phenotypes. However, most of the existing studies were based on historical datasets from one environment; therefore, they were unable to evaluate the efficiency of multi-omics prediction in multi-environment trials and distantly related populations. To fill those gaps, we designed a systematic experiment to collect omics data and evaluate 17 traits in two oat breeding populations planted in single and multiple environments. In the single-environment trial, transcriptomic BLUP (T), metabolomic BLUP (M), G + T, G + M, and G + T + M models showed greater prediction accuracy than GBLUP for 5, 10, 11, 17, and 17 traits, respectively, and metabolites generally performed better than transcripts when combined with SNPs. In the multi-environment trial, multi-trait models with omics data outperformed both counterpart multi-trait GBLUP models and single-environment omics models, and the highest prediction accuracy was achieved when modeling genetic covariance as an unstructured covariance model. We also demonstrated that omics data can be used to prioritize loci from one population with omics data to improve genomic prediction in a distantly related population using a two-kernel linear model that accommodated both likely casual loci with large-effect and loci that explain little or no phenotypic variance. We propose that the two-kernel linear model is superior to most genomic prediction models that assume each variant is equally likely to affect the trait and can be used to improve prediction accuracy for any trait with prior knowledge of genetic architecture.


Asunto(s)
Avena/genética , Modelos Genéticos , Valor Nutritivo , Semillas/química , Avena/química , Marcadores Genéticos , Metaboloma , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Transcriptoma
14.
G3 (Bethesda) ; 11(10)2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34568924

RESUMEN

Implementing genomic-based prediction models in genomic selection requires an understanding of the measures for evaluating prediction accuracy from different models and methods using multi-trait data. In this study, we compared prediction accuracy using six large multi-trait wheat data sets (quality and grain yield). The data were used to predict 1 year (testing) from the previous year (training) to assess prediction accuracy using four different prediction models. The results indicated that the conventional Pearson's correlation between observed and predicted values underestimated the true correlation value, whereas the corrected Pearson's correlation calculated by fitting a bivariate model was higher than the division of the Pearson's correlation by the squared root of the heritability across traits, by 2.53-11.46%. Across the datasets, the corrected Pearson's correlation was higher than the uncorrected by 5.80-14.01%. Overall, we found that for grain yield the prediction performance was highest using a multi-trait compared to a single-trait model. The higher the absolute genetic correlation between traits the greater the benefits of multi-trait models for increasing the genomic-enabled prediction accuracy of traits.


Asunto(s)
Fitomejoramiento , Triticum , Genómica , Genotipo , Modelos Genéticos , Fenotipo , Selección Genética , Triticum/genética
16.
Genome Biol ; 22(1): 213, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34301310

RESUMEN

Large-scale phenotype data can enhance the power of genomic prediction in plant and animal breeding, as well as human genetics. However, the statistical foundation of multi-trait genomic prediction is based on the multivariate linear mixed effect model, a tool notorious for its fragility when applied to more than a handful of traits. We present MegaLMM, a statistical framework and associated software package for mixed model analyses of a virtually unlimited number of traits. Using three examples with real plant data, we show that MegaLMM can leverage thousands of traits at once to significantly improve genetic value prediction accuracy.


Asunto(s)
Arabidopsis/genética , Genoma de Planta , Modelos Genéticos , Carácter Cuantitativo Heredable , Programas Informáticos , Triticum/genética , Zea mays/genética , Teorema de Bayes , Interacción Gen-Ambiente , Genómica , Genotipo , Humanos , Fenotipo , Fitomejoramiento
17.
Cell ; 184(12): 3333-3348.e19, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34010619

RESUMEN

Plant species have evolved myriads of solutions, including complex cell type development and regulation, to adapt to dynamic environments. To understand this cellular diversity, we profiled tomato root cell type translatomes. Using xylem differentiation in tomato, examples of functional innovation, repurposing, and conservation of transcription factors are described, relative to the model plant Arabidopsis. Repurposing and innovation of genes are further observed within an exodermis regulatory network and illustrate its function. Comparative translatome analyses of rice, tomato, and Arabidopsis cell populations suggest increased expression conservation of root meristems compared with other homologous populations. In addition, the functions of constitutively expressed genes are more conserved than those of cell type/tissue-enriched genes. These observations suggest that higher order properties of cell type and pan-cell type regulation are evolutionarily conserved between plants and animals.


Asunto(s)
Arabidopsis/genética , Genes de Plantas , Invenciones , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Solanum lycopersicum/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Proteínas Fluorescentes Verdes/metabolismo , Solanum lycopersicum/citología , Meristema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Regiones Promotoras Genéticas/genética , Biosíntesis de Proteínas , Especificidad de la Especie , Factores de Transcripción/metabolismo , Xilema/genética
18.
G3 (Bethesda) ; 11(3)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33772307

RESUMEN

The widely recounted story of the origin of cultivated strawberry (Fragaria × ananassa) oversimplifies the complex interspecific hybrid ancestry of the highly admixed populations from which heirloom and modern cultivars have emerged. To develop deeper insights into the three-century-long domestication history of strawberry, we reconstructed the genealogy as deeply as possible-pedigree records were assembled for 8,851 individuals, including 2,656 cultivars developed since 1775. The parents of individuals with unverified or missing pedigree records were accurately identified by applying an exclusion analysis to array-genotyped single-nucleotide polymorphisms. We identified 187 wild octoploid and 1,171 F. × ananassa founders in the genealogy, from the earliest hybrids to modern cultivars. The pedigree networks for cultivated strawberry are exceedingly complex labyrinths of ancestral interconnections formed by diverse hybrid ancestry, directional selection, migration, admixture, bottlenecks, overlapping generations, and recurrent hybridization with common ancestors that have unequally contributed allelic diversity to heirloom and modern cultivars. Fifteen to 333 ancestors were predicted to have transmitted 90% of the alleles found in country-, region-, and continent-specific populations. Using parent-offspring edges in the global pedigree network, we found that selection cycle lengths over the past 200 years of breeding have been extraordinarily long (16.0-16.9 years/generation), but decreased to a present-day range of 6.0-10.0 years/generation. Our analyses uncovered conspicuous differences in the ancestry and structure of North American and European populations, and shed light on forces that have shaped phenotypic diversity in F. × ananassa.


Asunto(s)
Domesticación , Fragaria , Fragaria/genética , Hibridación Genética , Fitomejoramiento
19.
Ecol Evol ; 11(3): 1100-1110, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33598117

RESUMEN

Ecological restoration often requires translocating plant material from distant sites. Importing suitable plant material is important for successful establishment and persistence. Yet, published guidelines for seed transfer are available for very few species. Accurately predicting how transferred plants will perform requires multiyear and multi-environment field trials and comprehensive follow-up work, and is therefore infeasible given the number of species used in restoration programs. Alternative methods to predict the outcomes of seed transfer are valuable for species without published guidelines. In this study, we analyzed the genetic structure of an important shrub used in ecological restoration in the Southern Rocky Mountains called alder-leaf mountain mahogany (Cercocarpus montanus). We sequenced DNA from 1,440 plants in 48 populations across a broad geographic range. We found that genetic heterogeneity among populations reflected the complex climate and topography across which the species is distributed. We identified temperature and precipitation variables that were useful predictors of genetic differentiation and can be used to generate seed transfer recommendations. These results will be valuable for defining management and restoration practices for mountain mahogany.

20.
PLoS Genet ; 16(12): e1009213, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33270639

RESUMEN

Chromosomal inversions play an important role in local adaptation. Inversions can capture multiple locally adaptive functional variants in a linked block by repressing recombination. However, this recombination suppression makes it difficult to identify the genetic mechanisms underlying an inversion's role in adaptation. In this study, we used large-scale transcriptomic data to dissect the functional importance of a 13 Mb inversion locus (Inv4m) found almost exclusively in highland populations of maize (Zea mays ssp. mays). Inv4m was introgressed into highland maize from the wild relative Zea mays ssp. mexicana, also present in the highlands of Mexico, and is thought to be important for the adaptation of these populations to cultivation in highland environments. However, the specific genetic variants and traits that underlie this adaptation are not known. We created two families segregating for the standard and inverted haplotypes of Inv4m in a common genetic background and measured gene expression effects associated with the inversion across 9 tissues in two experimental conditions. With these data, we quantified both the global transcriptomic effects of the highland Inv4m haplotype, and the local cis-regulatory variation present within the locus. We found diverse physiological effects of Inv4m across the 9 tissues, including a strong effect on the expression of genes involved in photosynthesis and chloroplast physiology. Although we could not confidently identify the causal alleles within Inv4m, this research accelerates progress towards understanding this inversion and will guide future research on these important genomic features.


Asunto(s)
Inversión Cromosómica , Regulación de la Expresión Génica de las Plantas , Zea mays/genética , Adaptación Fisiológica , Haplotipos , Polimorfismo Genético , Transcriptoma , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...