Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mech Ageing Dev ; 192: 111385, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33129798

RESUMEN

Several theories have been postulated, trying to explain why and how living organisms age. Despite some controversies and still huge open questions, a growing body of evidence suggest alterations of mitochondrial functionality and redox-homeostasis occur during the ageing process. Oxidative damage and mitochondrial dysfunction do not represent the cause of ageing per se but they have to be analyzed within the complexity of those series of processes occurring during lifespan. The establishment of a crosstalk among them is a shared common feature of many chronic age-related diseases, including neurodegenerative disorders, for which ageing is a major risk factor. The challenge is to understand when and how the interplay between these two systems move towards from normal ageing process to a pathological phenotype. Here in this review, we discuss the crosstalk between mitochondria and cytosolic-ROS. Furthermore, through a visual data mining approach, we attempt to describe the dynamic interplay between mitochondria and cellular redox state on the route from ageing to an AD phenotype.


Asunto(s)
Envejecimiento/fisiología , Enfermedad de Alzheimer/metabolismo , Homeostasis/fisiología , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Humanos , Oxidación-Reducción , Estrés Oxidativo
2.
Biochim Biophys Acta Gen Subj ; 1863(5): 893-902, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30817979

RESUMEN

BACKGROUND: Colorectal adenocarcinoma cells (Caco-2) are a widely used model of intestinal barrier to study cancer development, toxicological assessments, absorption and metabolism in food science or drug discovery. Caco-2 spontaneously differentiate into a monolayer expressing several specific characteristics, typically showed by mature enterocytes. For in vitro experiments, it is crucial to identify non-invasive and non-destructive techniques able to evaluate the integrity and differentiation of the cells monolayer. Thus, we aimed to assess these properties by analyzing electrical impedance measurements. METHODS: Caco-2 cells were differentiated for 21 days. The monolayer integrity and differentiation were primarily evaluated by means of morphological, biochemical and molecular data. Impedance measurements in a range of frequencies from 400 Hz to 50 kHz were performed using a dedicated set up, including customized Aerosol Jet Printed carbon-based sensors. RESULTS: The trends of RI observed at three different frequencies were able to describe cell growth and differentiation. In order to evaluate which frequencies better correlate with cell differentiation, Principal Component Analysis have been employed and the concordance analysis between RI magnitude and morphological, biochemical and molecular data, highlighted 40 kHz as the optimal frequency to assess Caco-2 cells differentiation process. CONCLUSION: We demonstrated the feasibility and reliability of applying impedance-based measurements not only to provide information about the monolayer status, but also for cell differentiation monitoring. GENERAL SIGNIFICANCE: This study underlined the possibility to use a dedicated sensor to assess the integrity and differentiation of Caco-2 monolayer, as a reliable non-destructive alternative to conventional approaches.


Asunto(s)
Diferenciación Celular , Impedancia Eléctrica , Técnicas Electroquímicas , Impresión Tridimensional , Células CACO-2 , Proliferación Celular , Electrodos , Humanos
3.
Oxid Med Cell Longev ; 2018: 2987249, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29725495

RESUMEN

γ-Oryzanol (ORY) is well known for its antioxidant potential. However, the mechanism by which ORY exerts its antioxidant effect is still unclear. In this paper, the antioxidant properties of ORY were investigated for its potential effects as a reactive oxygen and nitrogen species (ROS/RNS) scavenger and in activating antioxidant-promoting intracellular pathways utilizing the human embryonic kidney cells (HEK-293). The 24 h ORY exposure significantly prevented hydrogen peroxide- (H2O2-) induced ROS/RNS production at 3 h, and this effect was sustained for at least 24 h. ORY pretreatment also enhanced the activity of antioxidant enzymes: superoxide dismutase (SOD) and glutathione peroxidase (GPX). Interestingly, ORY induced the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) nuclear translocation and upregulation of Nrf2-dependent defensive genes such as NAD(P)H quinone reductase (NQO1), heme oxygenase-1 (HO-1), and glutathione synthetase (GSS) at mRNA and protein levels in both basal condition and after H2O2 insult. Thus, this study suggested an intriguing effect of ORY in modulating the Nrf2 pathway, which is also involved in regulating longevity as well as age-related diseases.


Asunto(s)
Factor 2 Relacionado con NF-E2/metabolismo , Fenilpropionatos/metabolismo , Antioxidantes , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA