Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 34(3): 541-556.e15, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38244542

RESUMEN

How is time encoded into organ growth and morphogenesis? We address this question by investigating heteroblasty, where leaf development and form are modified with progressing plant age. By combining morphometric analyses, fate-mapping through live-imaging, computational analyses, and genetics, we identify age-dependent changes in cell-cycle-associated growth and histogenesis that underpin leaf heteroblasty. We show that in juvenile leaves, cell proliferation competence is rapidly released in a "proliferation burst" coupled with fast growth, whereas in adult leaves, proliferative growth is sustained for longer and at a slower rate. These effects are mediated by the SPL9 transcription factor in response to inputs from both shoot age and individual leaf maturation along the proximodistal axis. SPL9 acts by activating CyclinD3 family genes, which are sufficient to bypass the requirement for SPL9 in the control of leaf shape and in heteroblastic reprogramming of cellular growth. In conclusion, we have identified a mechanism that bridges across cell, tissue, and whole-organism scales by linking cell-cycle-associated growth control to age-dependent changes in organ geometry.


Asunto(s)
Hojas de la Planta , Factores de Transcripción , Factores de Transcripción/metabolismo , Proliferación Celular , División Celular , Morfogénesis , Regulación de la Expresión Génica de las Plantas
2.
Curr Biol ; 32(21): R1215-R1222, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36347226

RESUMEN

Plant leaves display tremendous variation in shape. Here, we discuss how information obtained from genetics, live imaging and computational modeling has helped conceptualize the ways in which gene activity is translated into different leaf shapes. In this framework, the action of genes on leaf form can be captured as the sum of their effects on the amount, duration, and direction of cellular growth, which together produce leaf geometry. We use three different examples to illustrate this point. First, the emergence of complex versus simple leaves in eudicots, which arises from differences in organ-wide growth duration as well as local growth repression at the leaf margin. Second, the development of strap-shaped grass leaves with a broad sheathing base versus the typical eudicot leaves with a narrow petiole, where these features of grass leaves emerged through lateral expansion of the zone of leaf progenitor cells, coupled with later remodeling of growth of early domains of the leaf blade. Third, the formation of insect traps on carnivorous plants that arose through constrained directional growth that produced a 3D deformation. In all the above examples, changes in gene expression of different classes of homeobox genes have contributed to the altered growth patterns underlying these different aspects of leaf shape diversity.


Asunto(s)
Genes Homeobox , Hojas de la Planta , Hojas de la Planta/genética , Regulación de la Expresión Génica de las Plantas
3.
Curr Biol ; 32(17): 3773-3784.e5, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36029772

RESUMEN

Leaves of seed plants provide an attractive system to study the development and evolution of form. Leaves show varying degrees of margin complexity ranging from simple, as in Arabidopsis thaliana, to fully dissected into leaflets in the closely related species Cardamine hirsuta. Leaflet formation requires actions of Class I KNOTTED1-LIKE HOMEOBOX (KNOX1) and REDUCED COMPLEXITY (RCO) homeobox genes, which are expressed in the leaves of C. hirsuta but not A. thaliana. Evolutionary studies indicate that diversification of KNOX1 and RCO genes was repeatedly associated with increased leaf complexity. However, whether this gene combination represents a developmentally favored avenue for leaflet formation remains unknown, and the cell-level events through which the combined action of these genes drives leaflet formation are also poorly understood. Here we show, through a genetic screen, that when a C. hirsuta RCO transgene is expressed in A. thaliana, then ectopic KNOX1 expression in leaves represents a preferred developmental path for leaflet formation. Using time-lapse growth analysis, we demonstrate that KNOX1 expression in the basal domain of leaves leads to prolonged and anisotropic cell growth. This KNOX1 action, in synergy with local growth repression by RCO, is instrumental in generating rachises and petiolules, the linear geometrical elements, that bear leaflets in complex leaves. Our results show how the combination of cell-level growth analyses and genetics can help us understand how evolutionary modifications in expression of developmentally important genes are translated into diverse leaf shapes.


Asunto(s)
Arabidopsis , Genes Homeobox , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes Homeobox/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hojas de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Elife ; 112022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35510843

RESUMEN

Positional information is a central concept in developmental biology. In developing organs, positional information can be idealized as a local coordinate system that arises from morphogen gradients controlled by organizers at key locations. This offers a plausible mechanism for the integration of the molecular networks operating in individual cells into the spatially coordinated multicellular responses necessary for the organization of emergent forms. Understanding how positional cues guide morphogenesis requires the quantification of gene expression and growth dynamics in the context of their underlying coordinate systems. Here, we present recent advances in the MorphoGraphX software (Barbier de Reuille et al., 2015⁠) that implement a generalized framework to annotate developing organs with local coordinate systems. These coordinate systems introduce an organ-centric spatial context to microscopy data, allowing gene expression and growth to be quantified and compared in the context of the positional information thought to control them.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Programas Informáticos , Morfogénesis/fisiología
5.
Curr Biol ; 32(9): 1974-1985.e3, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35354067

RESUMEN

The Arabidopsis root offers good opportunities to investigate how regulated cellular growth shapes different tissues and organs, a key question in developmental biology. Along the root's longitudinal axis, cells sequentially occupy different developmental states. Proliferative meristematic cells give rise to differentiating cells, which rapidly elongate in the elongation zone, then mature and stop growing in the differentiation zone. The phytohormone cytokinin contributes to this zonation by positioning the boundary between the meristem and the elongation zone, called the transition zone. However, the cellular growth profile underlying root zonation is not well understood, and the cellular mechanisms that mediate growth cessation remain unclear. By using time-lapse imaging, genetics, and computational analysis, we analyze the effect of cytokinin on root zonation and cellular growth. We found that cytokinin promotes growth cessation in the distal (shootward) elongation zone in conjunction with accelerating the transition from elongation to differentiation. We estimated cell-wall stiffness by using osmotic treatment experiments and found that cytokinin-mediated growth cessation is associated with cell-wall stiffening and requires the action of an auxin influx carrier, AUX1. Our measurement of growth and cell-wall mechanical properties at a cellular resolution reveal mechanisms via which cytokinin influences cell behavior to shape tissue patterns.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/farmacología , Meristema , Raíces de Plantas
6.
Annu Rev Plant Biol ; 72: 325-356, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34143649

RESUMEN

Plant leaves display considerable variation in shape. Here, we introduce key aspects of leaf development, focusing on the morphogenetic basis of leaf shape diversity. We discuss the importance of the genetic control of the amount, duration, and direction of cellular growth for the emergence of leaf form. We highlight how the combined use of live imaging and computational frameworks can help conceptualize how regulated cellular growth is translated into different leaf shapes. In particular, we focus on the morphogenetic differences between simple and complex leaves and how carnivorous plants form three-dimensional insect traps. We discuss how evolution has shaped leaf diversity in the case of complex leaves, by tinkering with organ-wide growth and local growth repression, and in carnivorous plants, by modifying the relative growth of the lower and upper sides of the leaf primordium to create insect-digesting traps.


Asunto(s)
Redes Reguladoras de Genes , Hojas de la Planta , Simulación por Computador , Morfogénesis
7.
Curr Biol ; 30(24): 4857-4868.e6, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33035489

RESUMEN

A key challenge in biology is to understand how the regional control of cell growth gives rise to final organ forms. Plant leaves must coordinate growth along both the proximodistal and mediolateral axes to produce their final shape. However, the cell-level mechanisms controlling this coordination remain largely unclear. Here, we show that, in A. thaliana, WOX5, one of the WUSCHEL-RELATED HOMEOBOX (WOX) family of homeobox genes, acts redundantly with WOX1 and WOX3 (PRESSED FLOWER [PRS]) to control leaf shape. Through genetics and hormone measurements, we find that these WOXs act in part through the regional control of YUCCA (YUC) auxin biosynthetic gene expression along the leaf margin. The requirement for WOX-mediated YUC expression in patterning of leaf shape cannot be bypassed by the epidermal expression of YUC, indicating that the precise domain of auxin biosynthesis is important for leaf form. Using time-lapse growth analysis, we demonstrate that WOX-mediated auxin biosynthesis organizes a proximodistal growth gradient that promotes lateral growth and consequently the characteristic ellipsoid A. thaliana leaf shape. We also provide evidence that WOX proteins shape the proximodistal gradient of differentiation by inhibiting differentiation proximally in the leaf blade and promoting it distally. This regulation allows sustained growth of the blade and enables a leaf to attain its final form. In conclusion, we show that the WOX/auxin regulatory module shapes leaf form by coordinating growth along the proximodistal and mediolateral leaf axes.


Asunto(s)
Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Organogénesis de las Plantas/genética , Hojas de la Planta/crecimiento & desarrollo , Arabidopsis/anatomía & histología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ácidos Indolacéticos/metabolismo , Microscopía Intravital , Oxigenasas/genética , Oxigenasas/metabolismo , Hojas de la Planta/anatomía & histología , Plantas Modificadas Genéticamente , Imagen de Lapso de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Cell ; 177(6): 1405-1418.e17, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31130379

RESUMEN

How do genes modify cellular growth to create morphological diversity? We study this problem in two related plants with differently shaped leaves: Arabidopsis thaliana (simple leaf shape) and Cardamine hirsuta (complex shape with leaflets). We use live imaging, modeling, and genetics to deconstruct these organ-level differences into their cell-level constituents: growth amount, direction, and differentiation. We show that leaf shape depends on the interplay of two growth modes: a conserved organ-wide growth mode that reflects differentiation; and a local, directional mode that involves the patterning of growth foci along the leaf edge. Shape diversity results from the distinct effects of two homeobox genes on these growth modes: SHOOTMERISTEMLESS broadens organ-wide growth relative to edge-patterning, enabling leaflet emergence, while REDUCED COMPLEXITY inhibits growth locally around emerging leaflets, accentuating shape differences created by patterning. We demonstrate the predictivity of our findings by reconstructing key features of C. hirsuta leaf morphology in A. thaliana. VIDEO ABSTRACT.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Cardamine/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Arabidopsis/genética , Cardamine/genética , Linaje de la Célula/genética , Biología Computacional/métodos , Regulación de la Expresión Génica de las Plantas/genética , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo
10.
Curr Top Dev Biol ; 131: 109-139, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30612614

RESUMEN

Plant leaves are differentiated organs that arise sequentially from a population of pluripotent stem cells at the shoot apical meristem (SAM). There is substantial diversity in leaf shape, much of which depends on the size and arrangement of outgrowths at the leaf margin. These outgrowths are generated by a patterning mechanism similar to the phyllotactic processes producing organs at the SAM, which involves the transcription factors CUP-SHAPED COTYLEDON and the phytohormone auxin. In the leaf, this patterning mechanism creates sequential protrusions and indentations along the margin. The size, shape, and distribution of these protrusions also depend on the overall growth of the leaf lamina. Globally, growth is regulated by a complex genetic network controlling the distribution of cell proliferation and the timing of differentiation. Evolutionary changes in margin form arise from changes in two different classes of homeobox genes that modify the outcome of marginal patterning in diverse ways, and are under intense investigation.


Asunto(s)
Evolución Biológica , Redes Reguladoras de Genes , Meristema/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Hojas de la Planta/genética
11.
Curr Opin Plant Biol ; 47: 1-8, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30170216

RESUMEN

Pavement cells in the leaf epidermis of many plant species have intricate shapes that fit together much like the pieces of a jigsaw puzzle. They provide an accessible system to understand the development of complex cell shape. Since a protrusion in one cell must fit into the indentation in its neighbor, puzzle cells are also a good system to study how cell shape is coordinated across a plant tissue. Although molecular mechanisms have been proposed for both the patterning and coordination of puzzle cells, evidence is accumulating that mechanical and/or geometric cues may play a more significant role than previously thought.


Asunto(s)
Forma de la Célula/genética , Epidermis de la Planta/citología , Epidermis de la Planta/genética , Fenómenos Biomecánicos , Pared Celular/metabolismo , Modelos Biológicos , Epidermis de la Planta/crecimiento & desarrollo , Estrés Fisiológico
12.
Genes Dev ; 32(21-22): 1361-1366, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30366902

RESUMEN

How the interplay between cell- and tissue-level processes produces correctly proportioned organs is a key problem in biology. In plants, the relative size of leaves compared with their lateral appendages, called stipules, varies tremendously throughout development and evolution, yet relevant mechanisms remain unknown. Here we use genetics, live imaging, and modeling to show that in Arabidopsis leaves, the LATE MERISTEM IDENTITY1 (LMI1) homeodomain protein regulates stipule proportions via an endoreduplication-dependent trade-off that limits tissue size despite increasing cell growth. LM1 acts through directly activating the conserved mitosis blocker WEE1, which is sufficient to bypass the LMI1 requirement for leaf proportionality.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Endorreduplicación , Proteínas de Homeodominio/fisiología , Factores de Transcripción/fisiología , Arabidopsis/anatomía & histología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Elife ; 72018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29482719

RESUMEN

The shape and function of plant cells are often highly interdependent. The puzzle-shaped cells that appear in the epidermis of many plants are a striking example of a complex cell shape, however their functional benefit has remained elusive. We propose that these intricate forms provide an effective strategy to reduce mechanical stress in the cell wall of the epidermis. When tissue-level growth is isotropic, we hypothesize that lobes emerge at the cellular level to prevent formation of large isodiametric cells that would bulge under the stress produced by turgor pressure. Data from various plant organs and species support the relationship between lobes and growth isotropy, which we test with mutants where growth direction is perturbed. Using simulation models we show that a mechanism actively regulating cellular stress plausibly reproduces the development of epidermal cell shape. Together, our results suggest that mechanical stress is a key driver of cell-shape morphogenesis.


Asunto(s)
Forma de la Célula , Células Epidérmicas/fisiología , Células Vegetales/fisiología , Epidermis de la Planta/citología , Epidermis de la Planta/fisiología , Arabidopsis/citología , Arabidopsis/fisiología , Estrés Mecánico , Estrés Fisiológico
14.
New Phytol ; 216(2): 401-418, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28248421

RESUMEN

Eudicot leaves have astoundingly diverse shapes. The central problem addressed in this paper is the developmental origin of this diversity. To investigate this problem, we propose a computational model of leaf development that generalizes the largely conserved molecular program for the reference plants Arabidopsis thaliana, Cardamine hirsuta and Solanum lycopersicum. The model characterizes leaf development as a product of three interwoven processes: the patterning of serrations, lobes and/or leaflets on the leaf margin; the patterning of the vascular system; and the growth of the leaf blade spanning the main veins. The veins play a significant morphogenetic role as a local determinant of growth directions. We show that small variations of this model can produce diverse leaf shapes, from simple to lobed to compound. It is thus plausible that diverse shapes of eudicot leaves result from small variations of a common developmental program.


Asunto(s)
Morus/anatomía & histología , Morus/crecimiento & desarrollo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Simulación por Computador , Modelos Biológicos , Morfogénesis , Haz Vascular de Plantas/anatomía & histología , Factores de Tiempo
16.
J Exp Bot ; 66(16): 5083-102, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26116915

RESUMEN

The plant hormone auxin plays an essential role in the patterning of plant structures. Biological hypotheses supported by computational models suggest that auxin may fulfil this role by regulating its own transport, but the plausibility of previously proposed models has been questioned. We applied the notion of unidirectional fluxes and the formalism of Petri nets to show that the key modes of auxin-driven patterning-the formation of convergence points and the formation of canals-can be implemented by biochemically plausible networks, with the fluxes measured by dedicated tally molecules or by efflux and influx carriers themselves. Common elements of these networks include a positive feedback of auxin efflux on the allocation of membrane-bound auxin efflux carriers (PIN proteins), and a modulation of this allocation by auxin in the extracellular space. Auxin concentration in the extracellular space is the only information exchanged by the cells. Canalization patterns are produced when auxin efflux and influx act antagonistically: an increase in auxin influx or concentration in the extracellular space decreases the abundance of efflux carriers in the adjacent segment of the membrane. In contrast, convergence points emerge in networks in which auxin efflux and influx act synergistically. A change in a single reaction rate may result in a dynamic switch between these modes, suggesting plausible molecular implementations of coordinated patterning of organ initials and vascular strands predicted by the dual polarization theory.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Modelos Biológicos
17.
Ann Bot ; 114(4): 629-41, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25122657

RESUMEN

BACKGROUND AND AIMS: Bark patterns are a visually important characteristic of trees, typically attributed to fractures occurring during secondary growth of the trunk and branches. An understanding of bark pattern formation has been hampered by insufficient information regarding the biomechanical properties of bark and the corresponding difficulties in faithfully modelling bark fractures using continuum mechanics. This study focuses on the genus Xanthorrhoea (grasstrees), which have an unusual bark-like structure composed of distinct leaf bases connected by sticky resin. Due to its discrete character, this structure is well suited for computational studies. METHODS: A dynamic computational model of grasstree development was created. The model captures both the phyllotactic pattern of leaf bases during primary growth and the changes in the trunk's width during secondary growth. A biomechanical representation based on a system of masses connected by springs is used for the surface of the trunk, permitting the emergence of fractures during secondary growth to be simulated. The resulting fracture patterns were analysed statistically and compared with images of real trees. KEY RESULTS: The model reproduces key features of grasstree bark patterns, including their variability, spanning elongated and reticulate forms. The patterns produced by the model have the same statistical character as those seen in real trees. CONCLUSIONS: The model was able to support the general hypothesis that the patterns observed in the grasstree bark-like layer may be explained in terms of mechanical fractures driven by secondary growth. Although the generality of the results is limited by the unusual structure of grasstree bark, it supports the hypothesis that bark pattern formation is primarily a biomechanical phenomenon.


Asunto(s)
Magnoliopsida/crecimiento & desarrollo , Modelos Biológicos , Corteza de la Planta/crecimiento & desarrollo , Fenómenos Biomecánicos , Simulación por Computador , Magnoliopsida/anatomía & histología , Magnoliopsida/metabolismo , Corteza de la Planta/anatomía & histología , Corteza de la Planta/metabolismo , Resinas de Plantas/metabolismo , Árboles
18.
PLoS Comput Biol ; 10(1): e1003447, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24499933

RESUMEN

The hormone auxin plays a crucial role in plant morphogenesis. In the shoot apical meristem, the PIN-FORMED1 (PIN1) efflux carrier concentrates auxin into local maxima in the epidermis, which position incipient leaf or floral primordia. From these maxima, PIN1 transports auxin into internal tissues along emergent paths that pattern leaf and stem vasculature. In Arabidopsis thaliana, these functions are attributed to a single PIN1 protein. Using phylogenetic and gene synteny analysis we identified an angiosperm PIN clade sister to PIN1, here termed Sister-of-PIN1 (SoPIN1), which is present in all sampled angiosperms except for Brassicaceae, including Arabidopsis. Additionally, we identified a conserved duplication of PIN1 in the grasses: PIN1a and PIN1b. In Brachypodium distachyon, SoPIN1 is highly expressed in the epidermis and is consistently polarized toward regions of high expression of the DR5 auxin-signaling reporter, which suggests that SoPIN1 functions in the localization of new primordia. In contrast, PIN1a and PIN1b are highly expressed in internal tissues, suggesting a role in vascular patterning. PIN1b is expressed in broad regions spanning the space between new primordia and previously formed vasculature, suggesting a role in connecting new organs to auxin sinks in the older tissues. Within these regions, PIN1a forms narrow canals that likely pattern future veins. Using a computer model, we reproduced the observed spatio-temporal expression and localization patterns of these proteins by assuming that SoPIN1 is polarized up the auxin gradient, and PIN1a and PIN1b are polarized to different degrees with the auxin flux. Our results suggest that examination and modeling of PIN dynamics in plants outside of Brassicaceae will offer insights into auxin-driven patterning obscured by the loss of the SoPIN1 clade in Brassicaceae.


Asunto(s)
Arabidopsis/genética , Arabidopsis/fisiología , Ácidos Indolacéticos/química , Poaceae/fisiología , Algoritmos , Brachypodium/genética , Brachypodium/fisiología , Biología Computacional , Simulación por Computador , Flores , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Procesamiento de Imagen Asistido por Computador , Meristema , Filogenia , Hojas de la Planta/metabolismo , Poaceae/genética , Programas Informáticos , Zea mays/genética , Zea mays/fisiología
19.
New Phytol ; 193(3): 549-569, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22235985

RESUMEN

The use of computational techniques increasingly permeates developmental biology, from the acquisition, processing and analysis of experimental data to the construction of models of organisms. Specifically, models help to untangle the non-intuitive relations between local morphogenetic processes and global patterns and forms. We survey the modeling techniques and selected models that are designed to elucidate plant development in mechanistic terms, with an emphasis on: the history of mathematical and computational approaches to developmental plant biology; the key objectives and methodological aspects of model construction; the diverse mathematical and computational methods related to plant modeling; and the essence of two classes of models, which approach plant morphogenesis from the geometric and molecular perspectives. In the geometric domain, we review models of cell division patterns, phyllotaxis, the form and vascular patterns of leaves, and branching patterns. In the molecular-level domain, we focus on the currently most extensively developed theme: the role of auxin in plant morphogenesis. The review is addressed to both biologists and computational modelers.


Asunto(s)
Modelos Biológicos , Desarrollo de la Planta , Plantas/anatomía & histología , Morfogénesis , Plantas/metabolismo
20.
Proc Natl Acad Sci U S A ; 108(8): 3424-9, 2011 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-21300866

RESUMEN

Biological shapes are often produced by the iterative generation of repeated units. The mechanistic basis of such iteration is an area of intense investigation. Leaf development in the model plant Arabidopsis is one such example where the repeated generation of leaf margin protrusions, termed serrations, is a key feature of final shape. However, the regulatory logic underlying this process is unclear. Here, we use a combination of developmental genetics and computational modeling to show that serration development is the morphological read-out of a spatially distributed regulatory mechanism, which creates interspersed activity peaks of the growth-promoting hormone auxin and the cup-shaped cotyledon2 (CUC2) transcription factor. This mechanism operates at the growing leaf margin via a regulatory module consisting of two feedback loops working in concert. The first loop relates the transport of auxin to its own distribution, via polar membrane localization of the pinformed1 (PIN1) efflux transporter. This loop captures the potential of auxin to generate self-organizing patterns in diverse developmental contexts. In the second loop, CUC2 promotes the generation of PIN1-dependent auxin activity maxima while auxin represses CUC2 expression. This CUC2-dependent loop regulates activity of the conserved auxin efflux module in leaf margins to generate stable serration patterns. Conceptualizing leaf margin development via this mechanism also helps to explain how other developmental regulators influence leaf shape.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Tipificación del Cuerpo , Modelos Biológicos , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Arabidopsis/fisiología , Biorretroalimentación Psicológica , Transporte Biológico , Ácidos Indolacéticos , Reguladores del Crecimiento de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...