Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ambio ; 53(5): 718-729, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38165548

RESUMEN

In forests, the amount and diversity of structural features with high value for biodiversity, such as large trees and dead wood, are affected by productivity, stand age, and forest management. For efficient conservation of forest biodiversity, it is essential to understand the combined effects of these drivers. We used data from the Swedish National Forest Inventory to study the combined effects of productivity, stand age, and management for wood production on structures with high value for biodiversity: tree species richness, large living trees, dead wood volume, and specific dead wood types. Forest management changed the relationship between productivity and amount or diversity of some of the structures. Most structures increased with productivity and stand age, but decreased due to management. The negative effect of management was greatest for structures occurring mainly in high-productivity forests, such as deciduous dead wood. Thus, biodiversity conservation should target high-productivity forests to preserve these structures.


Asunto(s)
Bosques , Árboles , Biodiversidad , Suecia , Ecosistema
2.
Conserv Biol ; 38(3): e14226, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38111958

RESUMEN

Freshwater ecosystems and their bordering wetlands and riparian zones are vital for human society and biological diversity. Yet, they are among the most degraded ecosystems, where sharp declines in biodiversity are driven by human activities, such as hydropower development, agriculture, forestry, and fisheries. Because freshwater ecosystems are characterized by strongly reciprocal linkages with surrounding landscapes, human activities that encroach on or degrade riparian zones ultimately lead to declines in freshwater-riparian ecosystem functioning. We synthesized results of a symposium on freshwater, riparian, and wetland processes and interactions and analyzed some of the major problems associated with improving freshwater and riparian research and management. Three distinct barriers are the lack of involvement of local people in conservation research and management, absence of adequate measurement of biodiversity in freshwater and riparian ecosystems, and separate legislation and policy on riparian and freshwater management. Based on our findings, we argue that freshwater and riparian research and conservation efforts should be integrated more explicitly. Best practices for overcoming the 3 major barriers to improved conservation include more and sustainable use of traditional and other forms of local ecological knowledge, choosing appropriate metrics for ecological research and monitoring of restoration efforts, and mirroring the close links between riparian and freshwater ecosystems in legislation and policy. Integrating these 3 angles in conservation science and practice will provide substantial benefits in addressing the freshwater biodiversity crisis.


Tres grandes pasos hacia la conservación de la biodiversidad ribereña y de agua dulce Resumen Los ecosistemas de agua dulce y los humedales y zonas ribereñas que los bordean son vitales para la sociedad y la biodiversidad. Sin embargo, se encuentran entre los ecosistemas más degradados en donde las declinaciones graves de la biodiversidad son causadas por actividades humanas como el desarrollo hidroeléctrico, la agricultura, la silvicultura y las pesquerías. Puesto que los ecosistemas de agua dulce se caracterizan por tener un vínculo recíproco con los paisajes que los rodean, las actividades humanas que invaden o degradan las zonas ribereñas terminan en la declinación del funcionamiento del ecosistema ribereño de agua dulce. Sintetizamos los resultados de un simposio sobre los procesos e interacciones de agua dulce, ribereños y de humedales y analizamos algunos de los principales problemas asociados con la mejora de la investigación y gestión de agua dulce y ríos. Tres barreras claras son la falta de participación de la población local en la investigación y gestión de la conservación, la ausencia de una medición adecuada de la biodiversidad en los ecosistemas de agua dulce y ribereños, y una legislación y política separadas sobre la gestión ribereña y de agua dulce. Con base en nuestros hallazgos, argumentamos que la investigación y los esfuerzos de conservación de agua dulce y ríos deberían integrarse de manera más explícita. Las mejores prácticas para sobreponerse a las tres grandes barreras incluyen un mayor uso sustentable de los conocimientos tradicionales y otras formas de conocimiento, la selección de medidas apropiadas para la investigación ecológica y el monitoreo de los esfuerzos de restauración y la replicación de los vínculos cercanos entre los ecosistemas ribereños y de agua dulce en la legislación y en las políticas. La integración de estos tres ángulos dentro de las ciencias y prácticas de conservación proporcionará beneficios importantes en la manera de abordar la crisis de la biodiversidad de agua dulce.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Agua Dulce , Ríos , Conservación de los Recursos Naturales/métodos , Humedales
3.
J Environ Manage ; 345: 118879, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37659362

RESUMEN

Restoring peatland ecosystems involves significant uncertainty due to complex ecological and socio-economic feedbacks as well as alternative stable ecological states. The primary aim of this study was to investigate to what extent the natural functioning of drainage-affected peat soils can be restored, and to examine role of soil microbiota in this recovery process. To address these questions, a large-scale before-after-control-impact (BACI) experiment was conducted in drained peatland forests in Estonia. The restoration treatments included ditch closure and partial tree cutting to raise the water table and restore stand structure. Soil samples and environmental data were collected before and 3-4 years after the treatments; the samples were subjected to metabarcoding to assess fungal and bacterial communities and analysed for their chemical properties. The study revealed some indicators of a shift toward the reference state (natural mixotrophic bog-forests): the spatial heterogeneity in soil fungi and bacteria increased, as well as the relative abundance of saprotrophic fungi; while nitrogen content in the soil decreased significantly. However, a general stability of other physico-chemical properties (including pH remaining elevated by ca. one unit) and annual fluctuations in the microbiome suggested that soil recovery will remain incomplete and patchy for decades. The main implication is the necessity to manage hydrologically restored peatland forests while explicitly considering an uncertain future and diverse outcomes. This includes their continuous monitoring and the adoption of a precautionary approach to prevent further damage both to these ecosystems and to surrounding intact peatlands.


Asunto(s)
Bosques , Microbiota , Incertidumbre , Árboles , Suelo
4.
Mol Ecol Resour ; 22(8): 2871-2879, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35666173

RESUMEN

Molecular methods are increasingly used to identify species that lack conspicuous macro- or micromorphological characters. Taxonomic and ecological research teams barcode large numbers of collected voucher specimens annually. In this study we assessed the efficiency of long-read high throughput sequencing (HTS) as opposed to the traditionally used Sanger method for taxonomic identification of multiple vouchered fungal specimens. We also evaluated whether this method can provide reference information about intraindividual gene polymorphism. We developed a workflow based on a test set of 423 basidiomycete specimens (representing 195 species), the PacBio HTS method, and ribosomal rRNA operon internal transcribed spacer (ITS) and 28S rRNA gene (LSU) markers. The PacBio HTS had a higher success rate than Sanger sequencing at a comparable cost. Species identification based on PacBio reads was usually straightforward, because the dominant operational taxonomic unit (OTU) typically represented the targeted organism. The PacBio HTS also enabled us to detect widespread polymorphism within the ITS marker. We conclude that multiplex DNA barcoding of the fungal ITS and LSU markers using PacBio HTS is a useful tool for taxonomic identification of large amounts of collected voucher specimens at a competitive price. Furthermore, PacBio HTS accurately recovers various alleles and paralogues, which can provide crucial information for species delimitation and population-level studies.


Asunto(s)
Código de Barras del ADN Taxonómico , Secuenciación de Nucleótidos de Alto Rendimiento , Código de Barras del ADN Taxonómico/métodos , ADN de Hongos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Filogenia , ARN Ribosómico 28S , Análisis de Secuencia de ADN
5.
Oecologia ; 197(3): 807-816, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34657178

RESUMEN

In production forests, a common silvicultural objective is enhancing tree growth rates. The growth rate influences both mechanical and biochemical properties of wood, which may have an impact on dead wood inhabiting (i.e. saproxylic) species. In this study, we tested for the first time whether tree growth rates affect dead-wood associated assemblages in general and the occurrence of red-listed species in particular. We sampled saproxylic beetles (eclector traps) and fungi (DNA metabarcoding of wood samples) in dead trunks of Norway spruce (Picea abies), which had different growth rates within the same hemiboreal forests in Sweden. A high proportion of fungi showed a positive association to increasing tree growth. This resulted in higher fungal richness in fast-grown trees both at the trunk scale and across multiple studied trunks. Such patterns were not observed for saproxylic beetles. However, a set of species (both beetles and fungi) preferred slow-grown wood. Moreover, the total number of red-listed species was highest in slow-grown trunks. We conclude that dead wood from slow-grown trees hosts relatively fewer saproxylic species, but a part of these may be vulnerable to production forestry. It implies that slow-grown trees should be a target in nature conservation. However, where slow-grown trees are absent, for instance in forests managed for a high biomass production, increasing the volumes of dead wood from fast-grown trees may support many species.


Asunto(s)
Escarabajos , Árboles , Animales , Ecosistema , Agricultura Forestal , Bosques
6.
IMA Fungus ; 12(1): 2, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33461627

RESUMEN

Polyporous fungi, a morphologically delineated group of Agaricomycetes (Basidiomycota), are considered well studied in Europe and used as model group in ecological studies and for conservation. Such broad interest, including widespread sampling and DNA based taxonomic revisions, is rapidly transforming our basic understanding of polypore diversity and natural history. We integrated over 40,000 historical and modern records of polypores in Estonia (hemiboreal Europe), revealing 227 species, and including Polyporus submelanopus and P. ulleungus as novelties for Europe. Taxonomic and conservation problems were distinguished for 13 unresolved subgroups. The estimated species pool exceeds 260 species in Estonia, including at least 20 likely undescribed species (here documented as distinct DNA lineages related to accepted species in, e.g., Ceriporia, Coltricia, Physisporinus, Sidera and Sistotrema). Four broad ecological patterns are described: (1) polypore assemblage organization in natural forests follows major soil and tree-composition gradients; (2) landscape-scale polypore diversity homogenizes due to draining of peatland forests and reduction of nemoral broad-leaved trees (wooded meadows and parks buffer the latter); (3) species having parasitic or brown-rot life-strategies are more substrate-specific; and (4) assemblage differences among woody substrates reveal habitat management priorities. Our update reveals extensive overlap of polypore biota throughout North Europe. We estimate that in Estonia, the biota experienced ca. 3-5% species turnover during the twentieth century, but exotic species remain rare and have not attained key functions in natural ecosystems. We encourage new regional syntheses on long studied fungal groups to obtain landscape-scale understanding of species pools, and for elaborating fungal indicators for biodiversity assessments.

7.
J Environ Manage ; 250: 109439, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31499461

RESUMEN

Ecosystem restoration is gaining political and economic support worldwide, but its exact targets and costs often remain unclear. A key issue, both for predicting restoration success and assessing the costs, is the uncertainty of post-restoration development of the ecosystem. A specific combination of uncertainties emerges when ecosystem restoration would negatively affect pre-restoration species conservation values. Such dilemma appears to be common, but largely ignored in restoration planning; for example, in historically degraded forests, wetlands and grasslands that provide novel habitats for some threatened species. We present a framework of linked options for resolving the dilemma, and exemplify its application in extensive mire restoration in Estonia. The broad options include: redistributing the risks by timing; relocating restoration sites; modifying restoration techniques; and managing for future habitats of the species involved. In Estonia, we assessed these options based on spatially explicit mapping of expected future states of the ecosystem, their uncertainty, and the distribution of species at risk. Such planning documentation, combined with follow-up monitoring and experimentation, can be used for adaptive management, by funding organizations and for academic research.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Especies en Peligro de Extinción , Estonia , Humedales
8.
Mycologia ; 111(5): 871-883, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31433734

RESUMEN

Most known brown rot-producing species of Polyporales belong to the so-called "Antrodia clade" that largely consists of poroid species. In this study, we use three genetic markers to revise Antrodia s. str., the core group of this clade. We show that a corticioid species with a smooth hymenophore, Phlebia griseoflavescens, belongs to Antrodia s. str. Accordingly, we revise the generic concept of Antrodia s. str. to accommodate this species and two recently described poroid taxa, A. tenerifensis and A. multiformis. In addition, we describe two new poroid species within Antrodia s. str., A. latebrosa from Africa and A. peregrina from East Asia, and provide new documentation for the Southeast Asian species A. parvula based on recent collections from the type location.


Asunto(s)
Antrodia/clasificación , Antrodia/genética , Antrodia/citología , Antrodia/aislamiento & purificación , Análisis por Conglomerados , ADN de Hongos/química , ADN de Hongos/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Microbiología Ambiental , Microscopía , Filogenia , Análisis de Secuencia de ADN
9.
PLoS One ; 13(12): e0208535, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30540799

RESUMEN

Finding standard cost-effective methods for monitoring biodiversity is challenging due to trade-offs between survey costs (including expertise), specificity, and range of applicability. These trade-offs cause a lack of comparability among datasets collected by ecologists and conservationists, which is most regrettable in taxonomically demanding work on megadiverse inconspicuous taxon groups. We have developed a site-scale survey method for diverse sessile land organisms, which can be analyzed over multiple scales and linked with ecological insights and management. The core idea is that field experts can effectively allocate observation effort when the time, area, and priority sequence of tasks are fixed. We present the protocol, explain its specifications (taxon group; expert qualification; plot size; effort) and applications based on >800 original surveys of four taxon groups; and we analyze its effectiveness using data on polypores in hemiboreal and tropical forests. We demonstrate consistent effort-species richness curves and among-survey variation in contrasting ecosystems, and high effectiveness compared with casual observations both at local and regional scales. Bias related to observer experience appeared negligible compared with typical assemblage variation. Being flexible in terms of sampling design, the method has enabled us to compile data from various projects to assess conservation status and habitat requirements of most species (specifically rarities and including discovery of new species); also, when linked with site descriptions, to complete environmental assessments and select indicator species for management. We conclude that simple rules can significantly improve expert-based biodiversity surveys. Ideally, define (i) a common plot size that addresses multiple taxon groups and management goals; (ii) taxon groups based on field expertise and feasible number of species; (iii) sufficient and practical search time; (iv) a procedure for recording within-plot heterogeneity. Such a framework, combined with freedom to allocate effort on-site, helps utilizing full expertise of observers without losing technical rigor.


Asunto(s)
Biodiversidad , Ecosistema , Monitoreo del Ambiente/métodos , Monitoreo del Ambiente/economía , Bosques , Líquenes/crecimiento & desarrollo
10.
Fungal Biol ; 119(12): 1291-1310, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26615751

RESUMEN

Antrodia is a polyphyletic genus, comprising brown-rot polypores with annual or short-lived perennial resupinate, dimitic basidiocarps. Here we focus on species that are closely related to Antrodia crassa, and investigate their phylogeny and species delimitation using geographic, ecological, morphological and molecular data (ITS and LSU rDNA, tef1). Phylogenetic analyses distinguished four clades within the monophyletic group of eleven conifer-inhabiting species (five described herein): (1)A. crassa s. str. (boreal Eurasia), Antrodia cincta sp. nova (North America) and Antrodia cretacea sp. nova (holarctic), all three being characterized by inamyloid skeletal hyphae that dissolve quickly in KOH solution; (2) Antrodia ignobilis sp. nova, Antrodia sitchensis and Antrodia sordida from North America, and Antrodia piceata sp. nova (previously considered conspecific with A. sitchensis) from Eurasia, possessing amyloid skeletal hyphae; (3) Antrodia ladiana sp. nova from the southern part of the USA, Antrodia pinea from East Asia, and Antrodia ferox - so far known from subtropical North America, but here reported also from Eurasia. These three species have inamyloid hyphae and narrow basidiospores; (4) the North American Antrodia pini-cubensis, sharing similar morphological characters with A. pinea, forming a separate clade. The habitat data indicate that several species are threatened by intensive forestry.


Asunto(s)
Antrodia/aislamiento & purificación , Biodiversidad , Árboles/microbiología , Madera/microbiología , Antrodia/clasificación , Antrodia/genética , Datos de Secuencia Molecular , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...