Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Am Vet Med Assoc ; 262(5): 601-609, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599231

RESUMEN

While diverse strains of low-pathogenicity avian influenza have circulated in wild birds for a long period of time, there has previously been little pathology in wild birds, ducks have been the primary and largely asymptomatic wild reservoir, and spillover into mammals has been limited and rare. In recent years, a high-pathogenicity avian influenza (HPAI) virus has emerged on the global scene and shifted the previously established dogmas for influenza infection. High-pathogenicity avian influenza has expanded into wildlife in unprecedented numbers and species diversity, with unmatched disease severity for influenza in wildlife. As the disease ecology of influenza has shifted with this new variant, significant efforts are underway to understand disease course, pathology, and species susceptibility. Here we focus primarily on the impact that HPAI has had in wild mammals while framing these novel spillovers within the context of significantly expanding disease in avian species and geography. The clinical and pathology presentations of HPAI in these atypical hosts are discussed, as well as prognosis and risk for continued spillover. The companion Currents in One Health by Runstadler and Puryear, AJVR, May 2024, provides further context on viral reservoirs and possible routes of direct or environmental transmission and risk assessment of viral variants that are emerging within wildlife.

2.
Am J Vet Res ; 85(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38593825

RESUMEN

Highly pathogenic avian influenza (HPAI) has persisted as a One Health threat whose current circulation and impact are addressed in the companion Currents in One Health by Puryear and Runstadler, JAVMA, May 2024. Highly pathogenic avian influenza emerged as a by-product of agricultural practices and adapted to endemic circulation in wild bird species. Over more than 20 years, continued evolution in a complex ecology involving multiple hosts has produced a lineage that expanded globally over the last 2 years. Understanding the continued evolution and movement of HPAI relies on understanding how the virus is infecting different hosts in different contexts. This includes understanding the environmental factors and the natural ecology of viral transmission that impact host exposure and ultimately evolutionary trajectories. Particularly with the rapid host expansion, increased spillover to mammalian hosts, and novel clinical phenotypes in infected hosts, despite progress in understanding the impact of specific mutations to HPAI viruses that are associated with spillover potential, the threat to public health is poorly understood. Active research is focusing on new approaches to understanding the relationship of viral genotype to phenotype and the implementation of research and surveillance pipelines to make sense of the enormous potential for diverse HPAI viruses to emerge from wild reservoirs amid global circulation.


Asunto(s)
Animales Salvajes , Aves , Gripe Aviar , Mamíferos , Animales , Gripe Aviar/virología , Gripe Aviar/transmisión , Gripe Aviar/epidemiología , Animales Salvajes/virología , Aves/virología , Mamíferos/virología , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/epidemiología , Virus de la Influenza A/patogenicidad , Virus de la Influenza A/genética , Enfermedades Transmisibles Emergentes/virología , Enfermedades Transmisibles Emergentes/veterinaria , Enfermedades Transmisibles Emergentes/transmisión
3.
ACS Nano ; 17(14): 13393-13407, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37417775

RESUMEN

Detection of viable viruses in the air is critical in order to determine the level of risk associated with the airborne diffusion of viruses. Different methods have been developed for the isolation, purification, and detection of viable airborne viruses, but they require an extensive processing time and often present limitations including low physical efficiency (i.e., the amount of collected viruses), low biological efficiency (i.e., the number of viable viruses), or a combination of all. To mitigate such limitations, we have employed an efficient technique based on the magnetic levitation (Maglev) technique with a paramagnetic solution and successfully identified distinct variations in levitation and density characteristics among bacteria (Escherichia coli), phages (MS2), and human viruses (SARS-CoV-2 and influenza H1N1). Notably, the Maglev approach enabled a significant enrichment of viable airborne viruses in air samples. Furthermore, the enriched viruses obtained through Maglev exhibited high purity, rendering them suitable for direct utilization in subsequent analyses such as reverse transcription-polymerase chain reaction (RT-PCR) or colorimetric assays. The system is portable, easy to use, and cost-efficient and can potentially provide proactive surveillance data for monitoring future outbreaks of airborne infectious diseases and allow for the induction of various preventative and mitigative measures.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Virus , Humanos , SARS-CoV-2 , Fenómenos Magnéticos
4.
Artículo en Inglés | MEDLINE | ID: mdl-37297634

RESUMEN

H5Nx highly pathogenic avian influenza (HPAI) viruses of clade 2.3.4.4 have caused outbreaks in Europe among wild and domestic birds since 2016 and were introduced to North America via wild migratory birds in December 2021. We examined the spatiotemporal extent of HPAI viruses across continents and characterized ecological and environmental predictors of virus spread between geographic regions by constructing a Bayesian phylodynamic generalized linear model (phylodynamic-GLM). The findings demonstrate localized epidemics of H5Nx throughout Europe in the first several years of the epizootic, followed by a singular branching point where H5N1 viruses were introduced to North America, likely via stopover locations throughout the North Atlantic. Once in the United States (US), H5Nx viruses spread at a greater rate between US-based regions as compared to prior spread in Europe. We established that geographic proximity is a predictor of virus spread between regions, implying that intercontinental transport across the Atlantic Ocean is relatively rare. An increase in mean ambient temperature over time was predictive of reduced H5Nx virus spread, which may reflect the effect of climate change on declines in host species abundance, decreased persistence of the virus in the environment, or changes in migratory patterns due to ecological alterations. Our data provide new knowledge about the spread and directionality of H5Nx virus dispersal in Europe and the US during an actively evolving intercontinental outbreak, including predictors of virus movement between regions, which will contribute to surveillance and mitigation strategies as the outbreak unfolds, and in future instances of uncontained avian spread of HPAI viruses.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N2 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Estados Unidos/epidemiología , Gripe Aviar/epidemiología , Teorema de Bayes , Brotes de Enfermedades/veterinaria , Animales Salvajes , Aves , Europa (Continente)/epidemiología , Filogenia
5.
J Virol ; 97(5): e0054423, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37166327

RESUMEN

The interface between humans and wildlife is changing and, with it, the potential for pathogen introduction into humans has increased. Avian influenza is a prominent example, with an ongoing outbreak showing the unprecedented expansion of both geographic and host ranges. Research in the field is essential to understand this and other zoonotic threats. Only by monitoring dynamic viral populations and defining their biology in situ can we gather the information needed to ensure effective pandemic preparation.


Asunto(s)
Gripe Aviar , Gripe Humana , Zoonosis , Animales , Humanos , Animales Salvajes , Brotes de Enfermedades , Especificidad del Huésped , Gripe Aviar/epidemiología , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Pandemias , Zoonosis/epidemiología , Zoonosis/prevención & control
6.
Respir Care ; 68(1): 8-17, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36566031

RESUMEN

BACKGROUND: In the midst of the COVID-19 pandemic, noninvasive respiratory support (NRS) therapies such as high-flow nasal cannula (HFNC) and noninvasive ventilation (NIV) were central to respiratory care. The extent to which these treatments increase the generation and dispersion of infectious respiratory aerosols is not fully understood. The objective of this study was to characterize SARS-CoV-2 aerosol dispersion from subjects with COVID-19 undergoing NRS therapy. METHODS: Several different aerosol sampling devices were used to collect air samples in the vicinity of 31 subjects with COVID-19, most of whom were receiving NRS therapy, primarily HFNC. Aerosols were collected onto filters and analyzed for the presence of SARS-CoV-2 RNA. Additional measurements were collected in an aerosol chamber with healthy adult subjects using respiratory therapy devices under controlled and reproducible conditions. RESULTS: Fifty aerosol samples were collected from subjects receiving HFNC or NIV therapy, whereas 6 samples were collected from subjects not receiving NRS. Only 4 of the 56 aerosol samples were positive for SARS-CoV-2 RNA, and all positive samples were collected using a high air flow scavenger mask collection device placed in close proximity to the subject. The chamber measurements with healthy subjects did not show any significant increase in aerosol dispersion caused by the respiratory therapy devices compared to baseline. CONCLUSIONS: Our findings demonstrate very limited detection of SARS-CoV-2-containing aerosols in the vicinity of subjects with COVID-19 receiving NRS therapies in the clinical setting. These results, combined with controlled chamber measurements showing that HFNC and NIV device usage was not associated with increased aerosol dispersion, suggest that NRS therapies do not result in increased dispersal of aerosols in the clinical setting.


Asunto(s)
COVID-19 , Ventilación no Invasiva , Adulto , Humanos , COVID-19/terapia , SARS-CoV-2 , Pandemias , ARN Viral , Aerosoles y Gotitas Respiratorias , Ventilación no Invasiva/métodos , Cánula , Terapia por Inhalación de Oxígeno/métodos
7.
Mol Ecol ; 32(1): 198-213, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36239465

RESUMEN

Influenza A viruses (IAV) circulate endemically among many wild aquatic bird populations that seasonally migrate between wintering grounds in southern latitudes to breeding ranges along the perimeter of the circumpolar arctic. Arctic and subarctic zones are hypothesized to serve as ecologic drivers of the intercontinental movement and reassortment of IAVs due to high densities of disparate populations of long distance migratory and native bird species present during breeding seasons. Iceland is a staging ground that connects the East Atlantic and North Atlantic American flyways, providing a unique study system for characterizing viral flow between eastern and western hemispheres. Using Bayesian phylodynamic analyses, we sought to evaluate the viral connectivity of Iceland to proximal regions and how inter-species transmission and reassortment dynamics in this region influence the geographic spread of low and highly pathogenic IAVs. Findings demonstrate that IAV movement in the arctic and subarctic reflects wild bird migration around the perimeter of the circumpolar north, favouring short-distance flights between proximal regions rather than long distance flights over the polar interior. Iceland connects virus movement between mainland Europe and North America, consistent with the westward migration of wild birds from mainland Europe to Northeastern Canada and Greenland. Though virus diffusion rates were similar among avian taxonomic groups in Iceland, gulls play an outsized role as sinks of IAVs from other avian hosts prior to onward migration. These data identify patterns of virus movement in northern latitudes and inform future surveillance strategies related to seasonal and emergent IAVs with potential public health concern.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Teorema de Bayes , Animales Salvajes , Aves , Migración Animal , Filogenia
8.
One Health ; 15: 100422, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35910303

RESUMEN

Similar to many zoonotic pathogens which transmit from animals to humans, SARS-CoV-2 (CoV-2), the virus responsible for the COVID-19 pandemic, most likely originated in Rhinolophus bats before spreading among humans globally. Early into the pandemic, reports of CoV-2 diagnoses in animals from various countries emerged. While most CoV-2 positive animals were confirmed to have been in close contact with CoV-2 positive humans, there has been a paucity of published evidence to-date describing risk factors associated with CoV-2 transmission among humans and animals. The COVID-19 Human-Animal Interactions Survey (CHAIS) was developed to provide a standardized instrument describing human-animal interactions during the pandemic and to evaluate behavioral, spatiotemporal, and biological risk factors associated with bi-directional zoonotic transmission of CoV-2 within shared environments, predominantly households with limited information about human-wildlife or human-livestock interactions. CHAIS measures four broad domains of transmission risk: 1) risk and intensity of infection in human hosts, 2) spatial characteristics of shared environments, 3) behaviors and human-animal interactions, and 4) susceptible animal subpopulations. Following the development of CHAIS, with a One Health approach, a multidisciplinary group of experts (n = 20) was invited to review and provide feedback on the survey for content validity. Expert feedback was incorporated into two final survey formats-an extended version and an abridged version for which specific core questions addressing zoonotic and reverse zoonotic transmission were identified. Both versions are modularized, with each section having the capacity to serve as independent instruments, allowing researchers to customize the survey based on context and research-specific needs. Further adaptations for studies seeking to investigate other zoonotic pathogens with similar routes of transmission (i.e. respiratory, direct contact) are also possible. The CHAIS instrument is a standardized human-animal interaction survey developed to provide important data on risk factors that guide transmission of CoV-2, and other similar pathogens, among humans and animals.

9.
Sci Rep ; 12(1): 13083, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906292

RESUMEN

Avian influenza viruses can pose serious risks to agricultural production, human health, and wildlife. An understanding of viruses in wild reservoir species across time and space is important to informing surveillance programs, risk models, and potential population impacts for vulnerable species. Although it is recognized that influenza A virus prevalence peaks in reservoir waterfowl in late summer through autumn, temporal and spatial variation across species has not been fully characterized. We combined two large influenza databases for North America and applied spatiotemporal models to explore patterns in prevalence throughout the annual cycle and across the continental United States for 30 waterfowl species. Peaks in prevalence in late summer through autumn were pronounced for dabbling ducks in the genera Anas and Spatula, but not Mareca. Spatially, areas of high prevalence appeared to be related to regional duck density, with highest predicted prevalence found across the upper Midwest during early fall, though further study is needed. We documented elevated prevalence in late winter and early spring, particularly in the Mississippi Alluvial Valley. Our results suggest that spatiotemporal variation in prevalence outside autumn staging areas may also represent a dynamic parameter to be considered in IAV ecology and associated risks.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Migración Animal , Animales , Animales Salvajes , Patos , Humanos , Gripe Aviar/epidemiología , Prevalencia , Estados Unidos/epidemiología
10.
Viruses ; 14(7)2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35891510

RESUMEN

Arctic regions are ecologically significant for the environmental persistence and geographic dissemination of influenza A viruses (IAVs) by avian hosts and other wildlife species. Data describing the epidemiology and ecology of IAVs among wildlife in the arctic are less frequently published compared to southern temperate regions, where prevalence and subtype diversity are more routinely documented. Following PRISMA guidelines, this systematic review addresses this gap by describing the prevalence, spatiotemporal distribution, and ecological characteristics of IAVs detected among wildlife and the environment in this understudied region of the globe. The literature search was performed in PubMed and Google Scholar using a set of pre-defined search terms to identify publications reporting on IAVs in Arctic regions between 1978 and February 2022. A total of 2125 articles were initially screened, 267 were assessed for eligibility, and 71 articles met inclusion criteria. IAVs have been detected in multiple wildlife species in all Arctic regions, including seabirds, shorebirds, waterfowl, seals, sea lions, whales, and terrestrial mammals, and in the environment. Isolates from wild birds comprise the majority of documented viruses derived from wildlife; however, among all animals and environmental matrices, 26 unique low and highly pathogenic subtypes have been characterized in the scientific literature from Arctic regions. Pooled prevalence across studies indicates 4.23% for wild birds, 3.42% among tested environmental matrices, and seroprevalences of 9.29% and 1.69% among marine and terrestrial mammals, respectively. Surveillance data are geographically biased, with most data from the Alaskan Arctic and many fewer reports from the Russian, Canadian, North Atlantic, and Western European Arctic. We highlight multiple important aspects of wildlife host, pathogen, and environmental ecology of IAVs in Arctic regions, including the role of avian migration and breeding cycles for the global spread of IAVs, evidence of inter-species and inter-continental reassortment at high latitudes, and how climate change-driven ecosystem shifts, including changes in the seasonal availability and distribution of dietary resources, have the potential to alter host-pathogen-environment dynamics in Arctic regions. We conclude by identifying gaps in knowledge and propose priorities for future research.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Animales Salvajes , Regiones Árticas , Aves , Canadá , Ecosistema , Gripe Aviar/epidemiología , Mamíferos
11.
PLoS Pathog ; 18(5): e1010062, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35588106

RESUMEN

The diversity of influenza A viruses (IAV) is primarily hosted by two highly divergent avian orders: Anseriformes (ducks, swans and geese) and Charadriiformes (gulls, terns and shorebirds). Studies of IAV have historically focused on Anseriformes, specifically dabbling ducks, overlooking the diversity of hosts in nature, including gull and goose species that have successfully adapted to human habitats. This study sought to address this imbalance by characterizing spillover dynamics and global transmission patterns of IAV over 10 years at greater taxonomic resolution than previously considered. Furthermore, the circulation of viral subtypes in birds that are either host-adapted (low pathogenic H13, H16) or host-generalist (highly pathogenic avian influenza-HPAI H5) provided a unique opportunity to test and extend models of viral evolution. Using Bayesian phylodynamic modelling we uncovered a complex transmission network that relied on ecologically divergent bird hosts. The generalist subtype, HPAI H5 was driven largely by wild geese and swans that acted as a source for wild ducks, gulls, land birds, and domestic geese. Gulls were responsible for moving HPAI H5 more rapidly than any other host, a finding that may reflect their long-distance, pelagic movements and their immuno-naïve status against this subtype. Wild ducks, long viewed as primary hosts for spillover, occupied an optimal space for viral transmission, contributing to geographic expansion and rapid dispersal of HPAI H5. Evidence of inter-hemispheric dispersal via both the Pacific and Atlantic Rims was detected, supporting surveillance at high latitudes along continental margins to achieve early detection. Both neutral (geographic expansion) and non-neutral (antigenic selection) evolutionary processes were found to shape subtype evolution which manifested as unique geographic hotspots for each subtype at the global scale. This study reveals how a diversity of avian hosts contribute to viral spread and spillover with the potential to improve surveillance in an era of rapid global change.


Asunto(s)
Charadriiformes , Virus de la Influenza A , Gripe Aviar , Animales , Animales Salvajes , Teorema de Bayes , Aves , Patos , Humanos , Virus de la Influenza A/genética
12.
Ecol Appl ; 32(2): e2497, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34783416

RESUMEN

Gulls are ubiquitous in urban areas due to a growing reliance on anthropogenic feeding sites, which has led to changes in their abundance, distribution, and migration ecology, with implications for disease transmission. Gulls offer a valuable model for testing hypotheses regarding the dynamics of influenza A virus (IAV) - for which gulls are a natural reservoir in urban areas. We sampled sympatric populations of Ring-billed (Larus delawarensis), Herring (L. argentatus), and Great Black-backed Gulls (L. marinus) along the densely populated Atlantic rim of North America to understand how IAV transmission is influenced by drivers such as annual cycle, host species, age, habitat type, and their interplay. We found that horizontal transmission, rather than vertical transmission, played an outsized role in the amplification of IAV due to the convergence of gulls from different breeding grounds and age classes. We detected overlapping effects of age and season in our prevalence model, identifying juveniles during autumn as the primary drivers of the seasonal epidemic in gulls. Gulls accumulated immunity over their lifespan, however short-term fluctuations in seroprevalence were observed, suggesting that migration may impose limits on the immune system to maintain circulating antibodies. We found that gulls in coastal urban habitats had higher viral prevalence than gulls captured inland, correlating with higher richness of waterbird species along the coast, a mechanism supported by our movement data. The peak in viral prevalence in newly fledged gulls that are capable of long-distance movement has important implications for the spread of pathogens to novel hosts during the migratory season as well as for human health as gulls increasingly utilize urban habitats.


Asunto(s)
Charadriiformes , Virus de la Influenza A , Infecciones por Orthomyxoviridae , Factores de Edad , Animales , Charadriiformes/virología , Ecosistema , Infecciones por Orthomyxoviridae/veterinaria , Estaciones del Año , Estudios Seroepidemiológicos
13.
Emerg Microbes Infect ; 10(1): 1896-1907, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34498543

RESUMEN

BACKGROUND: There is great interest in understanding the viral genomic predictors of phenotypic traits that allow influenza A viruses to adapt to or become more virulent in different hosts. Machine learning techniques have demonstrated promise in addressing this critical need for other pathogens because the underlying algorithms are especially well equipped to uncover complex patterns in large datasets and produce generalizable predictions for new data. As the body of research where these techniques are applied for influenza A virus phenotype prediction continues to grow, it is useful to consider the strengths and weaknesses of these approaches to understand what has prevented these models from seeing widespread use by surveillance laboratories and to identify gaps that are underexplored with this technology. METHODS AND RESULTS: We present a systematic review of English literature published through 15 April 2021 of studies employing machine learning methods to generate predictions of influenza A virus phenotypes from genomic or proteomic input. Forty-nine studies were included in this review, spanning the topics of host discrimination, human adaptability, subtype and clade assignment, pandemic lineage assignment, characteristics of infection, and antiviral drug resistance. CONCLUSIONS: Our findings suggest that biases in model design and a dearth of wet laboratory follow-up may explain why these models often go underused. We, therefore, offer guidance to overcome these limitations, aid in improving predictive models of previously studied influenza A virus phenotypes, and extend those models to unexplored phenotypes in the ultimate pursuit of tools to enable the characterization of virus isolates across surveillance laboratories.


Asunto(s)
Algoritmos , Farmacorresistencia Viral/genética , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/genética , Aprendizaje Automático , Genoma Viral/genética , Genotipo , Humanos , Virus de la Influenza A/crecimiento & desarrollo , Fenotipo
14.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33858941

RESUMEN

Ferrets (Mustela putorius furo) are mustelids of special relevance to laboratory studies of respiratory viruses and have been shown to be susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and onward transmission. Here, we report the results of a natural experiment where 29 ferrets in one home had prolonged, direct contact and constant environmental exposure to two humans with symptomatic disease, one of whom was confirmed positive for SARS-CoV-2. We observed no evidence of SARS-CoV-2 transmission from humans to ferrets based on viral and antibody assays. To better understand this discrepancy in experimental and natural infection in ferrets, we compared SARS-CoV-2 sequences from natural and experimental mustelid infections and identified two surface glycoprotein Spike (S) mutations associated with mustelids. While we found evidence that angiotensin-converting enzyme II provides a weak host barrier, one mutation only seen in ferrets is located in the novel S1/S2 cleavage site and is computationally predicted to decrease furin cleavage efficiency. These data support the idea that host factors interacting with the novel S1/S2 cleavage site may be a barrier in ferret SARS-CoV-2 susceptibility and that domestic ferrets are at low risk of natural infection from currently circulating SARS-CoV-2. We propose two mechanistically grounded hypotheses for mustelid host adaptation of SARS-CoV-2, with possible effects that require additional investigation.


Asunto(s)
COVID-19/transmisión , Hurones/virología , Adaptación al Huésped , Mutación , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Enzima Convertidora de Angiotensina 2/fisiología , Animales , Susceptibilidad a Enfermedades , Humanos
15.
Methods Mol Biol ; 2123: 429-450, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32170708

RESUMEN

Influenza A infection has been detected in marine mammals going back to 1975, with additional unconfirmed outbreaks as far back as 1931. Over the past forty years, infectious virus has been recovered on ten separate occasions from both pinnipeds (harbor seal, elephant seal, and Caspian seal) and cetaceans (striped whale and pilot whale). Recovered viruses have spanned a range of subtypes (H1, H3, H4, H7, H10, and H13) and, in all but H1N1, show strong evidence for deriving directly from avian sources. To date, there have been five unusual mortality events directly attributed to influenza A virus; these have primarily occurred in harbor seals in the Northeastern United States, with the most recent occurring in harbor seals in the North Sea.There are numerous additional reports wherein influenza A virus has indirectly been identified in marine mammals; these include serosurveillance efforts that have detected influenza A- and B-specific antibodies in marine mammals spanning the globe and the detection of viral RNA in both active and opportunistic surveillance in the Northwest Atlantic. For viral detection and recovery, nasal, rectal, and conjunctival swabs have been employed in pinnipeds, while blowhole, nasal, and rectal swabs have been employed in cetaceans. In the case of deceased animals, virus has also been detected in tissue. Surveillance has historically been somewhat limited, relying largely upon opportunistic sampling of stranded or bycaught animals and primarily occurring in response to a mortality event. A handful of active surveillance projects have shown that influenza may be more endemic in marine mammals than previously appreciated, though live virus is difficult to recover. Surveillance efforts are hindered by permitting and logistical challenges, the absence of reagents and methodology optimized for nonavian wild hosts, and low concentration of virus recovered from asymptomatic animals. Despite these challenges, a growing body of evidence suggests that marine mammals are an important wild reservoir of influenza and may contribute to mammalian adaptation of avian variants.


Asunto(s)
Organismos Acuáticos/virología , Virus de la Influenza A/fisiología , Mamíferos/virología , Animales , Interacciones Huésped-Patógeno , Humanos , Virus de la Influenza A/aislamiento & purificación , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Replicación Viral/fisiología
16.
Bioconjug Chem ; 31(3): 554-566, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32078297

RESUMEN

Glycoproteins and their mimics are challenging to produce because of their large number of polysaccharide side chains that form a densely grafted protein-polysaccharide brush architecture. Herein a new approach to protein bioconjugate synthesis is demonstrated that can approach the functionalization densities of natural glycoproteins through oligosaccharide grafting. Global amino acid substitution is used to replace the methionine residues in a methionine-enriched elastin-like polypeptide with homopropargylglycine (HPG); the substitution was found to replace 93% of the 41 methionines in the protein sequence as well as broaden and increase the thermoresponsive transition. A series of saccharides were conjugated to the recombinant protein backbones through copper(I)-catalyzed alkyne-azide cycloaddition to determine reactivity trends, with 83-100% glycosylation of HPGs. Only an acetyl-protected sialyllactose moiety showed a lower level of 42% HPG glycosylation that is attributed to steric hindrance. The recombinant glycoproteins reproduced the key biofunctional properties of their natural counterparts such as viral inhibition and lectin binding.


Asunto(s)
Materiales Biomiméticos/química , Química Clic , Cobre/química , Glicoproteínas/metabolismo , Sustitución de Aminoácidos , Animales , Materiales Biomiméticos/farmacología , Perros , Hemaglutinación/efectos de los fármacos , Células de Riñón Canino Madin Darby
17.
Nat Biotechnol ; 37(2): 160-168, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30718881

RESUMEN

Metagenomic sequencing has the potential to transform microbial detection and characterization, but new tools are needed to improve its sensitivity. Here we present CATCH, a computational method to enhance nucleic acid capture for enrichment of diverse microbial taxa. CATCH designs optimal probe sets, with a specified number of oligonucleotides, that achieve full coverage of, and scale well with, known sequence diversity. We focus on applying CATCH to capture viral genomes in complex metagenomic samples. We design, synthesize, and validate multiple probe sets, including one that targets the whole genomes of the 356 viral species known to infect humans. Capture with these probe sets enriches unique viral content on average 18-fold, allowing us to assemble genomes that could not be recovered without enrichment, and accurately preserves within-sample diversity. We also use these probe sets to recover genomes from the 2018 Lassa fever outbreak in Nigeria and to improve detection of uncharacterized viral infections in human and mosquito samples. The results demonstrate that CATCH enables more sensitive and cost-effective metagenomic sequencing.


Asunto(s)
Biología Computacional/métodos , Genoma Viral , Metagenoma , Metagenómica , Animales , Culicidae/virología , Brotes de Enfermedades , Biblioteca de Genes , Variación Genética , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Fiebre de Lassa/virología , Nigeria/epidemiología , Sondas de Oligonucleótidos , Oligonucleótidos/genética , Análisis de Secuencia de ADN , Virosis
18.
Front Ecol Evol ; 72019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34660611

RESUMEN

Influenza A virus (IAV) is known to circulate among human and animal reservoirs, yet there are few studies that address the potential for urban rodents to carry and shed IAV. Rodents are often used as influenza models in the lab, but the few field studies that have looked for evidence of IAV in rodents have done so primarily in rural areas following outbreaks of IAV in poultry. This study sought to assess the prevalence of IAV recovered from wild Norway rats in a dense urban location (Boston). To do this, we sampled the oronasal cavity, paws, and lungs of Norway rats trapped by the City of Boston's Inspectional Services from December 2016 to September 2018. All samples were screened by real-time, reverse transcriptase PCR targeting the conserved IAV matrix segment. A total of 163 rats were trapped, 18 of which (11.04%) were RT-PCR positive for IAV in either oronasal swabs (9), paw swabs (9), both (2), or lung homogenates (2). A generalized linear model indicated that month and geographic location were correlated with IAV-positive PCR status of rats. A seasonal trend in IAV-PCR status was observed with the highest prevalence occurring in the winter months (December-January) followed by a decline over the course of the year, reaching its lowest prevalence in September. Sex and weight of rats were not significantly associated with IAV-PCR status, suggesting that rodent demography is not a primary driver of infection. This pilot study provides evidence of the need to further investigate the role that wild rats may play as reservoirs or mechanical vectors for IAV circulation in urban environments across seasons.

19.
PLoS One ; 13(5): e0197246, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29775471

RESUMEN

Influenza A virus infections are important causes of morbidity and mortality worldwide, and currently available prevention and treatment methods are suboptimal. In recent years, genome-wide investigations have revealed numerous host factors that are required for influenza to successfully complete its life cycle. However, only a select, small number of influenza strains were evaluated using this platform, and there was considerable variation in the genes identified across different investigations. In an effort to develop a universally efficacious therapeutic strategy with limited potential for the emergence of resistance, this study was performed to investigate the effect of combinatorial RNA interference (RNAi) on inhibiting the replication of diverse influenza A virus subtypes and strains. Candidate genes were selected for targeting based on the results of multiple previous independent genome-wide studies. The effect of single and combinatorial RNAi on the replication of 12 diverse influenza A viruses, including three strains isolated from birds and one strain isolated from seals, was then evaluated in primary normal human bronchial epithelial cells. After excluding overly toxic siRNA, two siRNA combinations were identified that reduced mean viral replication by greater than 79 percent in all mammalian strains, and greater than 68 percent in all avian strains. Host-directed combinatorial RNAi effectively prevents growth of a broad range of influenza virus strains in vitro, and is a potential therapeutic candidate for further development and future in vivo studies.


Asunto(s)
Células Epiteliales/virología , Virus de la Influenza A , Gripe Humana/prevención & control , Gripe Humana/terapia , Tratamiento con ARN de Interferencia , Animales , Aves , Bronquios/virología , Línea Celular Tumoral , Perros , Células HEK293 , Humanos , Virus de la Influenza A/genética , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Interferencia de ARN , Tratamiento con ARN de Interferencia/métodos , Replicación Viral
20.
Sci Total Environ ; 634: 20-28, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29626767

RESUMEN

Environmental chemicals, particularly organochlorinated contaminants (OCs), are associated with a ranged of adverse health effects, including impairment of the immune system and antiviral immunity. Influenza A virus (IAV) is an infectious disease of major global public health concern and exposure to OCs can increase the susceptibility, morbidity, and mortality to disease. It is however unclear how pollutants are interacting and affecting the outcome of viral infections at the cellular level. In this study, we investigated the effects of a mixture of environmentally relevant OCs on IAV infectivity upon in vitro exposure in Madin Darby Canine Kidney (MDCK) cells and human lung epithelial cells (A549). Exposure to OCs reduced IAV infectivity in MDCK and A549 cells during both short (18-24h) and long-term (72h) infections at 0.05 and 0.5ppm, and effects were more pronounced in cells co-treated with OCs and IAV than pre-treated with OCs prior to IAV (p<0.001). Pre-treatment of host cells with OCs did not affect IAV cell surface attachment or entry. Visualization of IAV by transmission electron microscopy revealed increased envelope deformations and fewer intact virions during OC exposure. Taken together, our results suggest that disruption of IAV infection upon in vitro exposure to OCs was not due to host-cell effects influencing viral attachment and entry, but perhaps mediated by direct effects on viral particles or cellular processes involved in host-virus interactions. In vitro infectivity studies such as ours can shed light on the complex processes underlying host-pathogen-pollutant interactions.


Asunto(s)
Contaminantes Ambientales/toxicidad , Virus de la Influenza A/fisiología , Animales , Perros , Interacciones Huésped-Patógeno , Humanos , Virus de la Influenza A/efectos de los fármacos , Gripe Humana , Células de Riñón Canino Madin Darby
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...