Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 35(15): 5232-5240, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30889955

RESUMEN

The aim of this study was to assess what properties of the pseudostationary phases in electrokinetic capillary chromatography affect the interactions between monomethyl auristatin E (MMAE) and hydrophilically modified structural analogues thereof with various lipophilic phases. MMAE is a widely used cytotoxic agent in antibody-drug conjugates (ADC), which are used as selective biopharmaceutical drugs in the treatment of cancers. MMAE and its derivatives are highly lipophilic, yet they fail to interact with biomimicking phosphatidylcholine-phosphatidylserine liposomes. To reveal what properties affect the interaction of the auristatin derivatives with cell plasma membrane-mimicking vesicles, capillary electrokinetic chromatography was used with four different types of micellar and vesicular pseudostationary phases: pure vesicles, mixed vesicles, mixed micelles, and pure micelles. Vesicular phases were composed of pure phospholipids [dimyristoylphosphatidylcholine (DMPC) and dilauroylphosphatidylcholine (DLPC)] and phospholipid-surfactant mixtures [sodium dodecyl sulfate, (SDS) with DMPC and DLPC] while the micellar phases comprised pure surfactant (SDS) and surfactant-phospholipid mixtures (SDS-DMPC and SDS-DLPC). In addition, differential scanning calorimetry and dynamic light scattering were used to monitor the aggregate composition. Our data shows that the interaction between hydrophobic auristatin derivatives and hydrophobic pseudostationary phases critically depends on the type, size, and hydrogen bonding capability of the pseudostationary phases.

2.
Talanta ; 197: 472-481, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30771964

RESUMEN

This work presents the development and validation of a quantitative HILIC UHPLC-ESI-QTOF-MS/MS method for amino acids combined with untargeted metabolic profiling of human corneal epithelial (HCE) cells after treatment with ionic liquids. The work included a preliminary metabotoxicity screening of 14 different ionic liquids, of which 9 carefully selected ionic liquids were chosen for a metabolomics study. This study is focused on the correlation between the toxicity of the ionic liquids and their metabolic profiles. The method development included the comparison of different MS/MS acquisition modes. A sequential window acquisition of all theoretical fragment ion mass spectra (SWATH) method with variable Q1 window widths and narrow Q1 target windows of 5 Da for most of the amino acids was selected as the optimal acquisition mode. Due to the absence of a true blank matrix, 13C,15N-isotopically labelled amino acids were utilized as surrogate calibrants, instead of proteinogenic amino acids. Partial least squares (PLS) analysis of the median effective concentrations (EC50) of 9 selected ionic liquids showed a correlation with their metabolic profile measured by the untargeted screening.


Asunto(s)
Líquidos Iónicos/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cromatografía Liquida , Relación Dosis-Respuesta a Droga , Humanos , Líquidos Iónicos/metabolismo , Líquidos Iónicos/farmacología , Estructura Molecular , Relación Estructura-Actividad , Espectrometría de Masas en Tándem
3.
Sci Rep ; 8(1): 14815, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30287903

RESUMEN

Our study demonstrates that nanoplasmonic sensing (NPS) can be utilized for the determination of the phase transition temperature (Tm) of phospholipids. During the phase transition, the lipid bilayer undergoes a conformational change. Therefore, it is presumed that the Tm of phospholipids can be determined by detecting conformational changes in liposomes. The studied lipids included 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). Liposomes in gel phase are immobilized onto silicon dioxide sensors and the sensor cell temperature is increased until passing the Tm of the lipid. The results show that, when the system temperature approaches the Tm, a drop of the NPS signal is observed. The breakpoints in the temperatures are 22.5 °C, 41.0 °C, and 55.5 °C for DMPC, DPPC, and DSPC, respectively. These values are very close to the theoretical Tm values, i.e., 24 °C, 41.4 °C, and 55 °C for DMPC, DPPC, and DSPC, respectively. Our studies prove that the NPS methodology is a simple and valuable tool for the determination of the Tm of phospholipids.


Asunto(s)
Transición de Fase , Fosfolípidos/química , Resonancia por Plasmón de Superficie/métodos , Temperatura de Transición , Liposomas/química
4.
Chemistry ; 24(11): 2669-2680, 2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29265502

RESUMEN

This study aims at extending the understanding of the toxicity mechanism of ionic liquids (ILs) using various analytical methods and cytotoxicity assays. The cytotoxicity of eight ILs and one zwitterionic compound was determined using mammalian and bacterial cells. The time dependency of the IL toxicity was assessed using human corneal epithelial cells. Hemolysis was performed using human red blood cells and the results were compared with destabilization data of synthetic liposomes upon addition of ILs. The effect of the ILs on the size and zeta potential of liposomes revealed information on changes in the lipid bilayer. Differential scanning calorimetry was used to study the penetration of the ILs into the lipid bilayer. Pulsed field gradient nuclear magnetic resonance spectroscopy was used to determine whether the ILs occurred as unimers, micelles, or if they were bound to liposomes. The results show that the investigated ILs can be divided into three groups based on the cytotoxicity mechanism: cell wall disrupting ILs, ILs exerting toxicity through both cell wall penetration and metabolic alteration, and ILs affecting solely on cell metabolism.


Asunto(s)
Líquidos Iónicos/química , Liposomas/química , Aliivibrio fischeri/efectos de los fármacos , Rastreo Diferencial de Calorimetría , Línea Celular , Dispersión Dinámica de Luz , Epitelio Corneal/citología , Epitelio Corneal/efectos de los fármacos , Epitelio Corneal/metabolismo , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Hemólisis/efectos de los fármacos , Humanos , Líquidos Iónicos/toxicidad , Espectroscopía de Resonancia Magnética
5.
Cornea ; 36(10): 1249-1255, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28825921

RESUMEN

PURPOSE: Most pure glaucoma drugs (pGDs) are hydrophobic substances intended to reduce elevated intraocular pressure. The aims of our study were to determine the toxicity of pGDs (brimonidine tartrate, brinzolamide, latanoprost, timolol maleate, and pilocarpine hydrochloride) on ocular surface cells and to establish whether their toxicity is subsequent to cellular membrane destabilization. METHODS: The toxicity of clinically efficient doses of pGDs was measured at different time points in a cell culture of human corneal epithelial cells using a redox indicator. pGD interaction with the plasma membrane was analyzed using a hemolysis assay and liposome electrokinetic chromatography. The capacity of pGDs to induce endoplasmic reticulum stress was investigated by immunoblotting. RESULTS: The toxicity assay showed that all pGDs decrease the viability of the epithelial cells to variable degrees. Early toxicity was measured for 4% pilocarpine and 0.15% brimonidine with 60% cell death at 4 hours, whereas 2% pilocarpine and 0.005% latanoprost showed almost 100% toxicity but only after 16 hours. The hemolysis assay and liposome electrokinetic chromatography experiments suggested that interaction between pGDs and lipid membranes is weak and cannot explain cell death through lysis. Immunoblotting revealed that the drugs activate endoplasmic reticulum stress and, with the exception of pilocarpine, have the capacity to induce apoptosis through upregulation of C/EBP homologous protein. CONCLUSIONS: Our study indicates that all studied pGDs decrease the viability of the corneal epithelial cells, but none of the tested compounds were able to destabilize cellular membranes. The pGDs seem to be internalized and can induce apoptosis through C/EBP homologous protein recruitment.


Asunto(s)
Antihipertensivos/toxicidad , Epitelio Corneal/efectos de los fármacos , Glaucoma/tratamiento farmacológico , Presión Intraocular/efectos de los fármacos , Lípidos de la Membrana/metabolismo , Apoptosis/efectos de los fármacos , Tartrato de Brimonidina/toxicidad , Línea Celular , Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Electroforesis Capilar , Epitelio Corneal/metabolismo , Humanos , Latanoprost , Liposomas/metabolismo , Hipertensión Ocular/tratamiento farmacológico , Pilocarpina/toxicidad , Prostaglandinas F Sintéticas/toxicidad , Sulfonamidas/toxicidad , Tiazinas/toxicidad , Timolol/toxicidad
6.
Sci Rep ; 7: 46673, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28429753

RESUMEN

We investigated the toxicological effect of seven novel cholinium, guanidinium, and tetramethylguanidinium carboxylate ionic liquids (ILs) from an ecotoxicological point of view. The emphasis was on the potential structure-toxicity dependency of these surface-active ILs in aqueous environment. The median effective concentrations (EC50) were defined for each IL using Vibrio (Aliivibrio) fischeri marine bacteria. Dipalmitoylphosphatidylcholine (DPPC) liposomes were used as biomimetic lipid membranes to study the interactions between the surface-active ILs and the liposomes. The interactions were investigated by following the change in the DPPC phase transition behaviour using differential scanning calorimetry (DSC). Critical micelle concentrations for the ILs were determined to clarify the analysis of the toxicity and the interaction results. Increasing anion alkyl chain length increased the toxicity, whereas branching of the chain decreased the toxicity of the ILs. The toxicity of the ILs in this study was mainly determined by the surface-active anions, while cations induced a minor impact on the toxicity. In the DSC experiments the same trend was observed for all the studied anions, whereas the cations seemed to induce more variable impact on the phase transition behaviour. Toxicity measurements combined with liposome interaction studies can provide a valuable tool for assessing the mechanism of toxicity.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Aliivibrio fischeri/efectos de los fármacos , Líquidos Iónicos/toxicidad , Liposomas/química , Transición de Fase/efectos de los fármacos , Rastreo Diferencial de Calorimetría , Colina/química , Colina/toxicidad , Ecotoxicología/métodos , Guanidina/química , Guanidina/toxicidad , Líquidos Iónicos/química , Agua de Mar/microbiología , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad
7.
Langmuir ; 33(4): 1066-1076, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28068104

RESUMEN

Owing to their unique properties and unlimited structural combinations, the ubiquitous use of ionic liquids (ILs) is steadily increasing. The objective of the present work is to shed light onto the effects of amidinium- and phosphonium-based ILs on phospholipid vesicles using a nanoplasmonic sensing measurement technique. A new and relatively simple method was developed for the immobilization of large unilamellar vesicles on two different hydrophilic surfaces composed of titanium dioxide and silicon nitride nanolayers. Among the pretreatment conditions studied, vesicle attachment on both substrate materials was achieved with HEPES buffer in the presence of sodium hydroxide and calcium chloride. To get an understanding of how ILs interact with intact vesicles or with supported lipid bilayers, the ILs 1,5-diazabicyclo(4.3.0)non-5-enium acetate ([DBNH][OAc]), tributyl(tetradecyl)phosphonium acetate ([P14444][OAc]), and tributylmethylphosphonium acetate ([P4441][OAc]) were introduced into the biomimetic system, and the characteristics of their interactions with the immobilized vesicles were determined. Depending on the IL, in situ real-time IL binding and/or phospholipid removal processes were observed. Although [DBNH][OAc] did not have any significant effect on the phospholipid vesicles, the strongest and the most significant effect was observed with [P14444][OAc]. The latter caused clear changes in the phospholipid bilayer: the ILs interacted with the bilayers, resulting in deformation of the vesicles most probably due to the formation of vesicle-IL aggregates. Only a mild effect was observed when [P4441][OAc], at a very high concentration, was exposed to the intact vesicles. In general, these results led to new insights into the effects of ILs on phospholipid vesicles, which are of great importance to the overall understanding of the harmfulness of ILs on biomembranes and biomimicking systems. In addition, the present work highlights the pivotal role of this highly surface-sensitive indirect biosensing technique in scrutinizing and dissecting the integrity and architecture of phospholipid vesicles in the nanoscale range.


Asunto(s)
Líquidos Iónicos/química , Nanotecnología , Fosfolípidos/química , Materiales Biomiméticos/química , Fosfatidilcolinas/química , Titanio/química , Liposomas Unilamelares/química
8.
J Chromatogr A ; 1479: 194-203, 2017 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-27955893

RESUMEN

Liposomes were used as biomimetic models in capillary electrokinetic chromatography (EKC) for the determination of distribution constants (KD) of certain local anesthetics and a commonly used preservative. Synthetic liposomes comprised phosphatidylcholine and phosphatidylglycerol phospholipids with and without cholesterol. In addition, ghost liposomes made from red blood cell (RBC) lipid extracts were used as pseudostationary phase to acquire information on how the liposome composition affects the interactions between anesthetics and liposomes. These results were compared with theoretical distribution coefficients at pH 7.4. In addition to 25°C, the distribution constants were determined at 37 and 42°C to simulate physiological conditions. Moreover, the usability of five electroosmotic flow markers in liposome (LEKC) and micellar EKC (MEKC) was studied. LEKC was proven to be a convenient and fast technique for obtaining data about the distribution constants of local anesthetics between liposome and aqueous phase. RBC liposomes can be utilized for more representative model of cellular membranes, and the results indicate that the distribution constants of the anesthetics are greatly dependent on the used liposome composition and the amount of cholesterol, while the effect of temperature on the distribution constants is less significant.


Asunto(s)
Anestésicos Locales/química , Cromatografía Capilar Electrocinética Micelar , Liposomas/química , Agua/química , Eritrocitos/metabolismo , Humanos , Lidocaína/química , Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Fosfolípidos/química , Fosfolípidos/aislamiento & purificación , Temperatura
9.
Chem Phys Lipids ; 201: 59-66, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27836694

RESUMEN

The effects of ionic liquids on model phospholipid membranes were studied by small-angle X-ray scattering, dynamic light scattering (DLS) and zeta potential measurements. Multilamellar 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes and large unilamellar vesicles composed of l-α-phosphatidylcholine (eggPC) and l-α-phosphatidylglycerol (eggPG) (80:20mol%) or eggPC, eggPG, and cholesterol (60:20:20mol%) were used as biomimicking membrane models. The effects of the phosphonium-based ionic liquids: tributylmethylphosphonium acetate, trioctylmethylphosphonium acetate, tributyl(tetradecyl)-phosphonium acetate, and tributyl(tetradecyl)-phosphonium chloride, were compared to those of 1-ethyl-3-methyl-imidazolium acetate. With multilamellar vesicles, the ionic liquids that did not disrupt liposomes decreased the lamellar spacing as a function of concentration. The magnitude of the effect depended on concentration for all studied ionic liquids. Using large unilamellar vesicles, first a slight decrease in the vesicle size, then aggregation of vesicles was observed by DLS for increasing ionic liquid concentrations. At concentrations just below those that caused aggregation of liposomes, large unilamellar vesicles were coated by ionic liquid cations, evidenced by a change in their zeta potential. The ability of phosphonium-based ionic liquids to affect liposomes is related to the length of the hydrocarbon chains in the cation. Generally, the ability of ionic liquids to disrupt liposomes goes hand in hand with inducing disorder in the phospholipid membrane. However, trioctylmethylphosphonium acetate selectively extracted and induced a well-ordered lamellar structure in phospholipids from disrupted cholesterol-containing large unilamellar vesicles. This kind of effect was not seen with any other combination of ionic liquids and liposomes.


Asunto(s)
Líquidos Iónicos/química , Liposomas/química , Compuestos Organofosforados/química , Fosfolípidos/química , Colesterol/química , Dispersión Dinámica de Luz , Dispersión del Ángulo Pequeño , Liposomas Unilamelares/química , Difracción de Rayos X
10.
Environ Sci Technol ; 50(13): 7116-25, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27253865

RESUMEN

The effect of 11 common amidinium, imidazolium, and phosphonium based ionic liquids (ILs) on zebrafish (Danio rerio) and Chinese hamster ovary cells (CHO) was investigated with specific emphasis on the effect of anion and cation chain length and aggregation of phosphonium based ILs. Viability and behavioral alteration in the locomotor activity and place preference, after IL treatment of 5 days postfertilization larvae, was recorded. Behavior and histological damage evaluation was performed for adult fish in order to get insight into the long-term effects of two potential biomass-dissolving ILs, [DBNH][OAc] and [P4441][OAc]. To get an understanding of how IL aggregation is linked to the toxicity of ILs, median effective concentrations (EC50) and critical micelle concentrations (CMC) were determined. The long-chain ILs were significantly more toxic than the short-chain ones, and the anion chain length was shown to be less significant than the cation chain length when assessing the impact of ILs on the viability of the organisms. Furthermore, most of the ILs were as monomers when the EC50 was reached. In addition, the ILs used in the long-term tests showed no significant effect on the zebrafish behavior, breeding, or histology, within the used concentration range.


Asunto(s)
Líquidos Iónicos , Pez Cebra , Animales , Células CHO , Cationes , Cricetulus
11.
Colloids Surf B Biointerfaces ; 136: 496-505, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26454056

RESUMEN

The worldwide use of ionic liquids (ILs) is steadily increasing, and even though they are often referred to as "green solvents" they have been reported to be toxic, especially toward aquatic organisms. In this work, we thoroughly study two phosphonium ILs; octyltributylphosphonium chloride ([P8444]Cl) and tributyl(tetradecyl)phosphonium chloride ([P14444]Cl). Firstly, the critical micelle concentrations (CMCs) of the ILs were determined with fluorescence spectroscopy and the optical pendant drop method in order to gain an understanding of the aggregation behavior of the ILs. Secondly, a biomimicking system of negatively charged unilamellar liposomes was used in order to study the effect of the ILs on biomembranes. Changes in the mechanical properties of adsorbed liposomes were determined by quartz crystal microbalance (QCM) measurements with silica coated quartz crystal sensors featuring a polycation layer. The results confirmed that both ILs were able to incorporate and alter the biomembrane structure. The membrane disrupting effect was emphasized with an increasing concentration and alkyl chain length of the ILs. In the extreme case, the phospholipid membrane integrity was completely compromised.


Asunto(s)
Electrólitos/química , Líquidos Iónicos/química , Liposomas , Tecnicas de Microbalanza del Cristal de Cuarzo , Dióxido de Silicio/química , Adsorción , Cationes , Espectrometría de Fluorescencia
12.
J Chromatogr A ; 1405: 178-87, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26072299

RESUMEN

The effect of three phosphonium and imidazolium ionic liquids (ILs) on the interaction between liposomes and common pharmaceuticals found in wastewaters was studied. The liposomes comprised zwitterionic phosphatidyl choline and negatively charged phosphatidyl glycerol. A set of common cationic, anionic, and neutral compounds with varying chemical composition and unique structures were included in the study. The electrophoretic mobilities of the analytes were determined using conventional capillary electrophoresis (CE), using CE under reversed electroosmotic flow mobility conditions, and in the presence of ILs in the background electrolyte (BGE) solution by electrokinetic chromatography (EKC). In order to evaluate the impact of ILs on the interaction between the compounds and the liposomes, EKC was performed with liposome dispersions, with and without ILs. The retention factors of the compounds were calculated using BGEs including liposome dispersions with and without ILs. Two phosphonium based ILs, namely tributyl(tetradecyl)phosphonium chloride ([P14444]Cl) and octyltributylphosphonium chloride ([P8444]Cl), were chosen due to their long alkyl chains and their low aggregation concentrations. Another IL, i.e. 1-ethyl-3-methylimidazolium acetate ([emim][OAc]), was chosen based on our previous study, which suggests that it has a minimal or even nonexistent effect on liposomes at the used concentrations. The results indicate that the studied ILs have an effect on the interactions between wastewater compounds and liposomes, but the effect is highly dependent on the concentration of the IL and on the IL alkyl chain lengths. Most of the ILs hindered the interactions between the liposomes and the compounds, indicating strong interaction between ILs and liposomes. In addition, the nature of the studied compounds themselves affected the interactions.


Asunto(s)
Líquidos Iónicos/química , Liposomas/química , Preparaciones Farmacéuticas/análisis , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Electroósmosis , Electroforesis Capilar , Concentración de Iones de Hidrógeno , Imidazoles/química , Compuestos Organofosforados/química , Fosfatidilcolinas/química , Fosfatidilgliceroles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...