Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Geroscience ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630423

RESUMEN

Both heart failure with preserved ejection fraction (HFpEF) and non-alcoholic fatty liver disease (NAFLD) develop due to metabolic dysregulation, has similar risk factors (e.g., insulin resistance, systemic inflammation) and are unresolved clinical challenges. Therefore, the potential link between the two disease is important to study. We aimed to evaluate whether NASH is an independent factor of cardiac dysfunction and to investigate the age dependent effects of NASH on cardiac function. C57Bl/6 J middle aged (10 months old) and aged mice (24 months old) were fed either control or choline deficient (CDAA) diet for 8 weeks. Before termination, echocardiography was performed. Upon termination, organ samples were isolated for histological and molecular analysis. CDAA diet led to the development of NASH in both age groups, without inducing weight gain, allowing to study the direct effect of NASH on cardiac function. Mice with NASH developed hepatomegaly, fibrosis, and inflammation. Aged animals had increased heart weight. Conventional echocardiography revealed normal systolic function in all cohorts, while increased left ventricular volumes in aged mice. Two-dimensional speckle tracking echocardiography showed subtle systolic and diastolic deterioration in aged mice with NASH. Histologic analyses of cardiac samples showed increased cross-sectional area, pronounced fibrosis and Col1a1 gene expression, and elevated intracardiac CD68+ macrophage count with increased Il1b expression. Conventional echocardiography failed to reveal subtle change in myocardial function; however, 2D speckle tracking echocardiography was able to identify diastolic deterioration. NASH had greater impact on aged animals resulting in cardiac hypertrophy, fibrosis, and inflammation.

2.
Sci Rep ; 14(1): 2188, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273008

RESUMEN

Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce major adverse cardiovascular events (MACE) in type 2 diabetic (T2DM) patients. Pharmacological selectivity of these agents to SGLT2 over SGLT1 is highly variant, with unknown clinical relevance. Genetically reduced SGLT1-but not SGLT2-activity correlates with lower risk of heart failure and mortality, therefore additional non-selective SGLT1 inhibition might be beneficial. In this prespecified meta-analysis, we included 6 randomized, placebo-controlled cardiovascular outcome trials of SGLT2 inhibitors assessing MACE in 57,553 patients with T2DM. Mixed-effects meta-regression revealed that pharmacological selectivity of SGLT2 inhibitors (either as continuous or dichotomized variable) had no significant impact on most outcomes. However, lower SGLT2 selectivity correlated with significantly lower risk of stroke (pseudo-R2 = 78%; p = 0.011). Indeed, dual SGLT1/2 inhibitors significantly reduced the risk of stroke (hazard ratio [HR], 0.78; 95% confidence interval [CI], 0.64-0.94), unlike selective agents (p for interaction = 0.018). The risk of diabetic ketoacidosis and genital infections was higher in both pharmacological groups versus placebo. However, hypotension occurred more often with non-selective SGLT2 inhibitors (odds ratio [OR], 1.87; 95% CI, 1.20-2.92) compared with selective agents (p for interaction = 0.044). In conclusion, dual SGLT1/2 inhibition reduces stroke in high-risk T2DM patients but has limited additional effect on other clinical outcomes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Accidente Cerebrovascular , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/inducido químicamente , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos , Hipoglucemiantes/efectos adversos , Transportador 2 de Sodio-Glucosa , Accidente Cerebrovascular/tratamiento farmacológico
3.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37762130

RESUMEN

The identification of novel drug targets is needed to improve the outcomes of heart failure (HF). G-protein-coupled receptors (GPCRs) represent the largest family of targets for already approved drugs, thus providing an opportunity for drug repurposing. Here, we aimed (i) to investigate the differential expressions of 288 cardiac GPCRs via droplet digital PCR (ddPCR) and bulk RNA sequencing (RNAseq) in a rat model of left ventricular pressure-overload; (ii) to compare RNAseq findings with those of ddPCR; and (iii) to screen and test for novel, translatable GPCR drug targets in HF. Male Wistar rats subjected to transverse aortic constriction (TAC, n = 5) showed significant systolic dysfunction vs. sham operated animals (SHAM, n = 5) via echocardiography. In TAC vs. SHAM hearts, RNAseq identified 69, and ddPCR identified 27 significantly differentially expressed GPCR mRNAs, 8 of which were identified using both methods, thus showing a correlation between the two methods. Of these, Prostaglandin-F2α-receptor (Ptgfr) was further investigated and localized on cardiomyocytes and fibroblasts in murine hearts via RNA-Scope. Antagonizing Ptgfr via AL-8810 reverted angiotensin-II-induced cardiomyocyte hypertrophy in vitro. In conclusion, using ddPCR as a novel screening method, we were able to identify GPCR targets in HF. We also show that the antagonism of Ptgfr could be a novel target in HF by alleviating cardiomyocyte hypertrophy.


Asunto(s)
Insuficiencia Cardíaca , Masculino , Ratas , Ratones , Animales , Ratas Wistar , Insuficiencia Cardíaca/genética , Miocitos Cardíacos , Reacción en Cadena de la Polimerasa , Hipertrofia
4.
Sci Rep ; 13(1): 16122, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752166

RESUMEN

Although systolic function characteristically shows gradual impairment in pressure overload (PO)-evoked left ventricular (LV) hypertrophy (LVH), rapid progression to congestive heart failure (HF) occurs in distinct cases. The molecular mechanisms for the differences in maladaptation are unknown. Here, we examined microRNA (miRNA) expression and miRNA-driven posttranscriptional gene regulation in the two forms of PO-induced LVH (with/without systolic HF). PO was induced by aortic banding (AB) in male Sprague-Dawley rats. Sham-operated animals were controls. The majority of AB animals demonstrated concentric LVH and slightly decreased systolic function (termed as ABLVH). In contrast, in some AB rats severely reduced ejection fraction, LV dilatation and increased lung weight-to-tibial length ratio was noted (referred to as ABHF). Global LV miRNA sequencing revealed fifty differentially regulated miRNAs in ABHF compared to ABLVH. Network theoretical miRNA-target analysis predicted more than three thousand genes with miRNA-driven dysregulation between the two groups. Seventeen genes with high node strength value were selected for target validation, of which five (Fmr1, Zfpm2, Wasl, Ets1, Atg16l1) showed decreased mRNA expression in ABHF by PCR. PO-evoked systolic HF is associated with unique miRNA alterations, which negatively regulate the mRNA expression of Fmr1, Zfmp2, Wasl, Ets1 and Atg16l1.


Asunto(s)
Insuficiencia Cardíaca Sistólica , MicroARNs , Masculino , Ratas , Animales , Insuficiencia Cardíaca Sistólica/genética , Ratas Sprague-Dawley , Regulación de la Expresión Génica , Hipertrofia Ventricular Izquierda , MicroARNs/genética , ARN Mensajero , Aumento de Peso , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil
5.
Sci Rep ; 13(1): 356, 2023 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-36611037

RESUMEN

Interleukin-1ß (IL-1ß) is a key mediator of non-alcoholic steatohepatitis (NASH), a chronic liver disease, and of systemic inflammation-driven aging. IL-1ß contributes to cardio-metabolic decline, and may promote hepatic oncogenic transformation. Therefore, IL-1ß is a potential therapeutic target in these pathologies. We aimed to investigate the hepatic and cardiac effects of an IL-1ß targeting monoclonal antibody in an aged mouse model of NASH. 24 months old male C57Bl/6J mice were fed with control or choline deficient (CDAA) diet and were treated with isotype control or anti-IL-1ß Mab for 8 weeks. Cardiac functions were assessed by conventional-and 2D speckle tracking echocardiography. Liver samples were analyzed by immunohistochemistry and qRT-PCR. Echocardiography revealed improved cardiac diastolic function in anti-IL-1ß treated mice with NASH. Marked hepatic fibrosis developed in CDAA-fed group, but IL-1ß inhibition affected fibrosis only at transcriptomic level. Hepatic inflammation was not affected by the IL-1ß inhibitor. PCNA staining revealed intensive hepatocyte proliferation in CDAA-fed animals, which was not influenced by neutralization of IL-1ß. IL-1ß inhibition increased hepatic expression of Pd-1 and Ctla4, while Pd-l1 expression increased in NASH. In conclusion, IL-1ß inhibition improved cardiac diastolic function, but did not ameliorate features of NASH; moreover, even promoted hepatic immune checkpoint expression, with concomitant NASH-related hepatocellular proliferation.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Masculino , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/patología , Interleucina-1beta/metabolismo , Hígado/metabolismo , Cirrosis Hepática/patología , Modelos Animales de Enfermedad , Fibrosis , Ratones Endogámicos C57BL
6.
Br J Pharmacol ; 180(6): 740-761, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36356191

RESUMEN

BACKGROUND AND PURPOSE: Immune checkpoint inhibitors (ICI), such as anti-PD-1 monoclonal antibodies, have revolutionized cancer therapy by enhancing the cytotoxic effects of T-cells against tumours. However, enhanced T-cell activity also may cause myocarditis and cardiotoxicity. Our understanding of the mechanisms of ICI-induced cardiotoxicity is limited. Here, we aimed to investigate the effect of PD-1 inhibition on cardiac function and explore the molecular mechanisms of ICI-induced cardiotoxicity. EXPERIMENTAL APPROACH: C57BL6/J and BALB/c mice were treated with isotype control or anti-PD-1 antibody. Echocardiography was used to assess cardiac function. Cardiac transcriptomic changes were investigated by bulk RNA sequencing. Inflammatory changes were assessed by qRT-PCR and immunohistochemistry in heart, thymus, and spleen of the animals. In follow-up experiments, anti-CD4 and anti-IL-17A antibodies were used along with PD-1 blockade in C57BL/6J mice. KEY RESULTS: Anti-PD-1 treatment led to cardiac dysfunction and left ventricular dilation in C57BL/6J mice, with increased nitrosative stress. Only mild inflammation was observed in the heart. However, PD-1 inhibition resulted in enhanced thymic inflammatory signalling, where Il17a increased most prominently. In BALB/c mice, cardiac dysfunction was not evident, and thymic inflammatory activation was more balanced. Inhibition of IL-17A prevented anti-PD-1-induced cardiac dysfunction in C57BL6/J mice. Comparing myocardial transcriptomic changes in C57BL/6J and BALB/c mice, differentially regulated genes (Dmd, Ass1, Chrm2, Nfkbia, Stat3, Gsk3b, Cxcl9, Fxyd2, and Ldb3) were revealed, related to cardiac structure, signalling, and inflammation. CONCLUSIONS: PD-1 blockade induces cardiac dysfunction in mice with increased IL-17 signalling in the thymus. Pharmacological inhibition of IL-17A treatment prevents ICI-induced cardiac dysfunction.


Asunto(s)
Cardiotoxicidad , Cardiopatías , Ratones , Animales , Cardiotoxicidad/etiología , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Interleucina-17 , Ratones Endogámicos C57BL , Inflamación/complicaciones
7.
PLoS One ; 17(11): e0277785, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36383629

RESUMEN

BACKGROUND: In many of the risk estimation algorithms for patients with ST-elevation myocardial infarction (STEMI), heart rate and systolic blood pressure are key predictors. Yet, these parameters may also be altered by the applied medical treatment / circulatory support without concomitant improvement in microcirculation. Therefore, we aimed to investigate whether venous lactate level, a well-known marker of microcirculatory failure, may have an added prognostic value on top of the conventional variables of the "Global Registry of Acute Coronary Events" (GRACE) 2.0 model for predicting 30-day all-cause mortality of STEMI patients treated with primary percutaneous coronary intervention (PCI). METHODS: In a prospective single-center registry study conducted from May 2020 through April 2021, we analyzed data of 323 cases. Venous blood gas analysis was performed in all patients at admission. Nested logistic regression models were built using the GRACE 2.0 score alone (base model) and with the addition of venous lactate level (expanded model) with 30-day all-cause mortality as primary outcome measure. Difference in model performance was analyzed by the likelihood ratio (LR) test and the integrated discrimination improvement (IDI). Independence of the predictors was evaluated by the variance inflation factor (VIF). Discrimination and calibration was characterized by the c-statistic and calibration intercept / slope, respectively. RESULTS: Addition of lactate level to the GRACE 2.0 score improved the predictions of 30-day mortality significantly as assessed by both LR test (LR Chi-square = 8.7967, p = 0.0030) and IDI (IDI = 0.0685, p = 0.0402), suggesting that the expanded model may have better predictive ability than the GRACE 2.0 score. Furthermore, the VIF was 1.1203, indicating that the measured lactate values were independent of the calculated GRACE 2.0 scores. CONCLUSIONS: Our results suggest that admission venous lactate level and the GRACE 2.0 score may be independent and additive predictors of 30-day all-cause mortality of STEMI patients treated with primary PCI.


Asunto(s)
Intervención Coronaria Percutánea , Infarto del Miocardio con Elevación del ST , Humanos , Infarto del Miocardio con Elevación del ST/cirugía , Infarto del Miocardio con Elevación del ST/etiología , Intervención Coronaria Percutánea/efectos adversos , Estudios Prospectivos , Microcirculación , Medición de Riesgo , Factores de Riesgo , Valor Predictivo de las Pruebas , Técnicas de Apoyo para la Decisión , Factores de Tiempo , Sistema de Registros , Pronóstico , Lactatos
8.
Artículo en Inglés | MEDLINE | ID: mdl-36360678

RESUMEN

OBJECTIVES: The actual frequency and the risk factors of SARS-CoV-2 reinfection is still a matter of intense scientific discussion. In this case series, we report three elite athletes who underwent COVID-19 reinfection with a short time frame. CASE PRESENTATIONS: As a part of contact tracing, three speed skaters (22-, 24-, and 29-year-old males) were found to be SARS-CoV-2 positive by polymerase chain reaction (PCR) tests. Later on, only one of the athletes experienced mild symptoms, such as fatigue, loss of smell and taste and subfebrility, while the other two athletes were asymptomatic. Following the quarantine period, detailed return-to-play examinations, including laboratory testing, ECG, 24-h Holter monitoring, transthoracic echocardiography and cardiac magnetic resonance imaging, revealed no apparent abnormality; therefore, the athletes restarted training. After a median of 74 days, all three athletes presented with typical symptoms of COVID-19, such as fever, marked fatigue and headache. SARS-CoV-2 PCR tests were performed again, showing recurrent positivity. Repeated return-to-play assessments were initiated, finding no relevant abnormality. Athletes were also tested for SARS-CoV-2 anti-nucleoprotein antibody titers, showing only modest increases following the second infection. CONCLUSIONS: We report a small cluster of elite athletes who underwent a PCR-proven SARS-CoV-2 reinfection. According to these findings, athletes may be considered as a high-risk group in terms of recurrent COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Masculino , Humanos , Reinfección/epidemiología , COVID-19/diagnóstico , COVID-19/epidemiología , Atletas , Fatiga/etiología
9.
Am J Physiol Heart Circ Physiol ; 323(1): H204-H222, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35687503

RESUMEN

Investigating the effect of sex on pressure unloading therapy in a clinical scenario is limited by several nonstandardized factors. Hence, we sought to study sex-related similarities and differences under laboratory conditions. Pressure overload was induced in male and female rats by aortic banding (AB) for 6 and 12 wk. Age-matched sham-operated animals served as controls. Pressure unloading was performed by aortic debanding at week 6. Different aspects of myocardial remodeling were characterized by echocardiography, pressure-volume analysis, histology, qRT-PCR, and explorative proteomics. Hypertrophy, increased fetal gene expression, interstitial fibrosis, and prolonged active relaxation were noted in the AB groups at week 6 in both sexes. However, decompensation of systolic function and further deterioration of diastolic function only occurred in male AB rats at week 12. AB induced similar proteomic alterations in both sexes at week 6, whereas characteristic differences were found at week 12. After debanding, regression of hypertrophy and recovery of diastolic function took place to a similar extent in both sexes. Nevertheless, fibrosis, transcription of ß-myosin-to-α-myosin heavy chain ratio, and myocardial proteomic alterations were reduced to a greater degree in females than in males. Debanding exposed anti-remodeling properties in both sexes and prevented the functional decline in males. Female sex is associated with greater reversibility of fibrosis, fetal gene expression, and proteomic alterations. Nevertheless, pressure unloading exposes a more pronounced anti-remodeling effect on the functional level in males, which is attributed to the more progressive functional deterioration in AB animals.NEW & NOTEWORTHY The present study is the first to assess the role of sex on pressure unloading-induced reverse and anti-remodeling in a rat model of aortic banding and debanding. Our data indicate that female sex is associated with a greater reversibility of fibrosis, fetal gene expression, and proteomic alterations compared with males. Nevertheless, pressure unloading exposes more anti-remodeling effect on the functional level in males, which is attributed to the more rapid functional deterioration in aortic-banded animals.


Asunto(s)
Hipertrofia Ventricular Izquierda , Proteómica , Animales , Aorta , Femenino , Fibrosis , Masculino , Miocardio/patología , Ratas , Remodelación Ventricular
10.
ESC Heart Fail ; 9(4): 2747-2752, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35585786

RESUMEN

AIMS: Inflammatory pathways are increasingly recognized as an important factor in the pathophysiology of both heart failure (HF) and atrial fibrillation (AF). However, there is no data about inflammation-related histological and molecular alterations in HF-associated AF. The objective of our study was to investigate inflammatory pathways and fibrosis in end-stage HF-associated AF. METHODS AND RESULTS: Left atrial samples of 24 male patients with end stage ischemic HF undergoing heart transplantation were analysed. Twelve patients suffered from sustained AF while the others had no documented AF. The expression of inflammasome sensors and their downstream signalling were investigated by Western blot. No differences were observed in the expression of inflammasome sensors between the two groups, while cleaved caspase-1 increased tendentiously in the AF group (P = 0.051). Cleaved caspase-1 also showed significant correlation with the expression of interleukin-1ß and its cleaved form in the total population and in the AF group (P < 0.05). The presence of myocardial and epicardial macrophages were assessed by ionized calcium-binding adaptor molecule 1 (Iba1) immunostaining. Number of macrophages showed a tendency towards elevation in the left atrial myocardium and epicardium of AF compared with SR group. The amount of total and interstitial fibrosis was determined on Masson's trichrome-stained sections. Histological assessment revealed no difference between AF and SR groups in the amount of either total or interstitial fibrosis. CONCLUSIONS: This is the first study on inflammation-related differences between HF with SR or AF showing elevated inflammasome activity and enhanced macrophage infiltration in left atrial samples of patients with AF.


Asunto(s)
Fibrilación Atrial , Insuficiencia Cardíaca , Fibrilación Atrial/complicaciones , Caspasas , Fibrosis , Insuficiencia Cardíaca/etiología , Humanos , Inflamasomas/metabolismo , Inflamación , Masculino
11.
Eur Heart J Cardiovasc Imaging ; 23(2): 188-197, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-34432004

RESUMEN

AIMS: We sought to investigate the correlation between speckle-tracking echocardiography (STE)-derived myocardial work (MW) and invasively measured contractility in a rat model of athlete's heart. We also assessed MW in elite athletes and explored its association with cardiopulmonary exercise test (CPET)-derived aerobic capacity. METHODS AND RESULTS: Sixteen rats underwent a 12-week swim training program and were compared to controls (n = 16). STE was performed to assess global longitudinal strain (GLS), which was followed by invasive pressure-volume analysis to measure contractility [slope of end-systolic pressure-volume relationship (ESPVR)]. Global MW index (GMWI) was calculated from GLS curves and left ventricular (LV) pressure recordings. In the human investigations, 20 elite swimmers and 20 healthy sedentary controls were enrolled. GMWI was calculated through the simultaneous evaluation of GLS and non-invasively approximated LV pressure curves at rest. All subjects underwent CPET to determine peak oxygen uptake (VO2/kg). Exercised rats exhibited higher values of GLS, GMWI, and ESPVR than controls (-20.9 ± 1.7 vs. -17.6 ± 1.9%, 2745 ± 280 vs. 2119 ± 272 mmHg·%, 3.72 ± 0.72 vs. 2.61 ± 0.40 mmHg/µL, all PExercise < 0.001). GMWI correlated robustly with ESPVR (r = 0.764, P < 0.001). In humans, regular exercise training was associated with decreased GLS (-17.6 ± 1.5 vs. -18.8 ± 0.9%, PExercise = 0.002) but increased values of GMWI at rest (1899 ± 136 vs. 1755 ± 234 mmHg·%, PExercise = 0.025). GMWI exhibited a positive correlation with VO2/kg (r = 0.527, P < 0.001). CONCLUSIONS: GMWI precisely reflected LV contractility in a rat model of exercise-induced LV hypertrophy and captured the supernormal systolic performance in human athletes even at rest. Our findings endorse the utilization of MW analysis in the evaluation of the athlete's heart.


Asunto(s)
Cardiomegalia Inducida por el Ejercicio , Animales , Ventrículos Cardíacos , Hipertrofia Ventricular Izquierda , Contracción Miocárdica , Miocardio , Ratas , Sístole , Función Ventricular Izquierda
12.
J Transl Med ; 19(1): 507, 2021 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-34895263

RESUMEN

BACKGROUND: Reduced cardiovascular risk in premenopausal women has been the focus of research in recent decades. Previous hypothesis-driven experiments have highlighted the role of sex hormones on distinct inflammatory responses, mitochondrial proteins, extracellular remodeling and estrogen-mediated cardioprotective signaling pathways related to post-ischemic recovery, which were associated with better cardiac functional outcomes in females. We aimed to investigate the early, sex-specific functional and proteomic changes following myocardial ischemia in an unbiased approach. METHODS: Ischemia was induced in male (M-Isch) and female (F-Isch) rats with sc. injection of isoproterenol (85 mg/kg) daily for 2 days, while controls (M-Co, F-Co) received sc. saline solution. At 48 h after the first injection pressure-volume analysis was carried out to assess left ventricular function. FFPE tissue slides were scanned and analyzed digitally, while myocardial proteins were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using isobaric labeling. Concentrations of circulating steroid hormones were measured with LC-MS/MS. Feature selection (PLS and PLS-DA) was used to examine associations among functional, proteomic and hormonal datasets. RESULTS: Induction of ischemia resulted in 38% vs 17% mortality in M-Isch and F-Isch respectively. The extent of ischemic damage to surviving rats was comparable between the sexes. Systolic dysfunction was more pronounced in males, while females developed a more severe impairment of diastolic function. 2224 proteins were quantified, with 520 showing sex-specific differential regulation. Our analysis identified transcriptional, cytoskeletal, contractile, and mitochondrial proteins, molecular chaperones and the extracellular matrix as sources of disparity between the sexes. Bioinformatics highlighted possible associations of estrogens and their metabolites with early functional and proteomic alterations. CONCLUSIONS: Our study has highlighted sex-specific alterations in systolic and diastolic function shortly after ischemia, and provided a comprehensive look at the underlying proteomic changes and the influence of estrogens and their metabolites. According to our bioinformatic analysis, inflammatory, mitochondrial, chaperone, cytoskeletal, extracellular and matricellular proteins are major sources of intersex disparity, and may be promising targets for early sex-specific pharmacologic interventions.


Asunto(s)
Isquemia Miocárdica , Proteómica , Animales , Cromatografía Liquida , Femenino , Corazón , Humanos , Masculino , Isquemia Miocárdica/metabolismo , Ratas , Espectrometría de Masas en Tándem
13.
Int J Mol Sci ; 22(18)2021 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-34576016

RESUMEN

Selective sodium-glucose cotransporter 2 (SGLT2) inhibitors reduced the risk of hospitalization for heart failure in patients with or without type 2 diabetes (T2DM) in large-scale clinical trials. The exact mechanism of action is currently unclear. The dual SGLT1/2 inhibitor sotagliflozin not only reduced hospitalization for HF in patients with T2DM, but also lowered the risk of myocardial infarction and stroke, suggesting a possible additional benefit related to SGLT1 inhibition. In fact, several preclinical studies suggest that SGLT1 plays an important role in cardiac pathophysiological processes. In this review, our aim is to establish the clinical significance of myocardial SGLT1 inhibition through reviewing basic research studies in the context of SGLT2 inhibitor trials.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Cardiomiopatías Diabéticas/prevención & control , Miocardio/metabolismo , Transportador 1 de Sodio-Glucosa/antagonistas & inhibidores , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Diabetes Mellitus Tipo 2/complicaciones , Corazón/efectos de los fármacos , Humanos , Transportador 1 de Sodio-Glucosa/metabolismo
14.
Antioxidants (Basel) ; 10(8)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34439438

RESUMEN

Myocardial sodium-glucose cotransporter 1 (SGLT1) has been shown to be upregulated in humans with heart failure (HF) with or without diabetes. In vitro studies have linked SGLT1 to increased nitro-oxidative stress in cardiomyocytes. We aimed to assess the relation between left ventricular (LV) SGLT1 expression and the extent of nitro-oxidative stress in two non-diabetic rat models of chronic heart failure (HF) evoked by either pressure (TAC, n = 12) or volume overload (ACF, n = 12). Sham-operated animals (Sham-T and Sham-A, both n = 12) served as controls. Both TAC and ACF induced characteristic LV structural and functional remodeling. Western blotting revealed that LV SGLT1 protein expression was significantly upregulated in both HF models (both p < 0.01), whereas the phosphorylation of ERK1/2 was decreased only in ACF; AMPKα activity was significantly reduced in both models. The protein expression of the Nox4 NADPH oxidase isoform was increased in both TAC and ACF compared with respective controls (both p < 0.01), showing a strong positive correlation with SGLT1 expression (r = 0.855, p < 0.001; and r = 0.798, p = 0.001, respectively). Furthermore, SGLT1 protein expression positively correlated with the extent of myocardial nitro-oxidative stress in failing hearts assessed by 3-nitrotyrosin (r = 0.818, p = 0.006) and 4-hydroxy-2-nonenal (r = 0.733, p = 0.020) immunostaining. Therefore, LV SGLT1 protein expression was upregulated irrespective of the nature of chronic hemodynamic overload, and correlated significantly with the expression of Nox4 and with the level of myocardial nitro-oxidative stress, suggesting a pathophysiological role of SGLT1 in HF.

15.
Cardiovasc Res ; 117(13): 2639-2651, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34117866

RESUMEN

AIMS: Interleukin-1ß (IL-1ß) is an important pathogenic factor in cardiovascular diseases including chronic heart failure (HF). The CANTOS trial highlighted that inflammasomes as primary sources of IL-1 ß are promising new therapeutic targets in cardiovascular diseases. Therefore, we aimed to assess inflammasome activation in failing hearts to identify activation patterns of inflammasome subtypes as sources of IL-1ß. METHODS AND RESULTS: Out of the four major inflammasome sensors tested, expression of the inflammasome protein absent in melanoma 2 (AIM2) and NLR family CARD domain-containing protein 4 (NLRC4) increased in human HF regardless of the aetiology (ischaemic or dilated cardiomyopathy), while the NLRP1/NALP1 and NLRP3 (NLR family, pyrin domain containing 1 and 3) inflammasome showed no change in HF samples. AIM2 expression was primarily detected in monocytes/macrophages of failing hearts. Translational animal models of HF (pressure or volume overload, and permanent coronary artery ligation in rat, as well as ischaemia/reperfusion-induced HF in pigs) demonstrated activation pattern of AIM2 similar to that of observed in end-stages of human HF. In vitro AIM2 inflammasome activation in human Tohoku Hospital Pediatrics-1 (THP-1) monocytic cells and human AC16 cells was significantly reduced by pharmacological blockade of pannexin-1 channels by the clinically used uricosuric drug probenecid. Probenecid was also able to reduce pressure overload-induced mortality and restore indices of disease severity in a rat chronic HF model in vivo. CONCLUSIONS: This is the first report showing that AIM2 and NLRC4 inflammasome activation contribute to chronic inflammation in HF and that probenecid alleviates chronic HF by reducing inflammasome activation. The present translational study suggests the possibility of repositioning probenecid for HF indications.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al ADN/metabolismo , Insuficiencia Cardíaca/metabolismo , Inflamasomas/metabolismo , Miocitos Cardíacos/metabolismo , Receptores de Superficie Celular/metabolismo , Adolescente , Adulto , Anciano , Animales , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/inmunología , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/inmunología , Estudios de Casos y Controles , Conexinas/antagonistas & inhibidores , Conexinas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Modelos Animales de Enfermedad , Femenino , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/inmunología , Insuficiencia Cardíaca/fisiopatología , Humanos , Inflamasomas/inmunología , Masculino , Persona de Mediana Edad , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/inmunología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Probenecid/farmacología , Ratas Wistar , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/inmunología , Transducción de Señal , Sus scrofa , Células THP-1 , Función Ventricular Izquierda , Adulto Joven
16.
Cells ; 10(5)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067928

RESUMEN

In patients undergoing coronary artery bypass grafting (CABG), ischemia/reperfusion injury (IRI) is the main contributor to organ dysfunction. Aging-induced vascular damage may be further aggravated during CABG. Favorable effects of conditioned medium (CM) from mesenchymal stem cells (MSCs) have been suggested against IRI. We hypothesized that adding CM to saline protects vascular grafts from IRI in rats. We found that CM contains 28 factors involved in apoptosis, inflammation, and oxidative stress. Thoracic aortic rings from 15-month-old rats were explanted and immediately mounted in organ bath chambers (aged group) or underwent 24 h of cold ischemic preservation in saline-supplemented either with vehicle (aged-IR group) or CM (aged-IR+CM group), prior to mounting. Three-month-old rats were used as referent young animals. Aging was associated with an increase in intima-to-media thickness, an increase in collagen content, higher caspase-12 mRNA levels, and immunoreactivity compared to young rats. Impaired endothelium-dependent vasorelaxation to acetylcholine in the aged-IR group compared to the aged-aorta was improved by CM (aged 61 ± 2% vs. aged-IR 38 ± 2% vs. aged-IR+CM 50 ± 3%, p < 0.05). In the aged-IR group, the already high mRNA levels of caspase-12 were decreased by CM. CM alleviates endothelial dysfunction following IRI in 15-month-old rats. The protective effect may be related to the inhibition of caspase-12 expression.


Asunto(s)
Aorta Torácica/metabolismo , Medios de Cultivo Condicionados/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Células Madre Mesenquimatosas/metabolismo , Daño por Reperfusión/prevención & control , Vasodilatación , Factores de Edad , Animales , Aorta Torácica/patología , Aorta Torácica/fisiopatología , Caspasa 12/genética , Caspasa 12/metabolismo , Células Cultivadas , Isquemia Fría , Colágeno/metabolismo , Estrés del Retículo Endoplásmico , Células Endoteliales/patología , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Fibrosis , Técnicas In Vitro , Masculino , Ratas Endogámicas Lew , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Daño por Reperfusión/fisiopatología , Factores de Tiempo
18.
Geroscience ; 43(4): 1995-2013, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33871784

RESUMEN

The use of hearts with left-ventricular (LV) hypertrophy (LVH) could offer an opportunity to extend the donor pool for cardiac transplantation. We assessed the effects of LVH in 18-month-old spontaneously hypertensive stroke-prone (SHRSP) donor rats and following transplantation. In donors, cardiac function and structural alterations were assessed. Then, the hearts were transplanted into young normotensive-rats. We evaluated LV graft function 1 h after transplantation. The myocardial expression of 92 genes involved in apoptosis, inflammation, and oxidative-stress was profiled using PCR-array. Compared to controls, SHRSP-rats developed LVH, had increased LV systolic performance (slope of the end-diastolic pressure-volume (PV) relationship: 1.6±0.2 vs 0.8±0.1mmHg/µl, p<0.05) accompanied by diastolic dysfunction [prolonged time constant of LV pressure decay (Tau: 15.8±0.6 vs 12.3±0.5ms) and augmented diastolic stiffness (LV end-diastolic PV relationship: 0.103±0.012 vs 0.045±0.006mmHg/ml), p<0.05]. They presented ECG changes, myocardial fibrosis, and increased nitrotyrosine immunoreactivity and plasma troponin-T and creatine kinase-CM levels. After transplantation, even though the graft contractility was better in SHRSP rats compared to controls, the adverse impact of ischemia/reperfusion-injury on contractility was not altered (Ees ratio after versus before transplantation: 32% vs 29%, p>0.05). Whereas nitrotyrosine immunoreactivity was higher, myeloperoxidase-positive cell infiltration was decreased in the SHRSP+transplanted compared to control+transplanted. Among the tested genes, LVH was associated with altered expression of 38 genes in donors, while transplantation of these hearts resulted in the change of four genes. Alterations in 18-month-old donor hearts, as a consequence of hypertension and LVH, were not associated with graft dysfunction in the early phase of reperfusion after transplantation.


Asunto(s)
Trasplante de Corazón , Animales , Perfilación de la Expresión Génica , Trasplante de Corazón/efectos adversos , Humanos , Hipertrofia , Ratas , Reperfusión , Donantes de Tejidos
19.
Antioxidants (Basel) ; 10(3)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33803975

RESUMEN

Although regular exercise training is associated with cardiovascular benefits, the increased risk of atrial arrhythmias has been observed after vigorous exercise and has been related to oxidative stress. We aimed at investigating exercise-induced atrial remodeling in a rat model of an athlete's heart and determining sex-specific differences. Age-matched young adult rats were divided into female exercised, female control, male exercised, and male control groups. After exercised animals completed a 12-week-long swim training protocol, echocardiography and in vivo cardiac electrophysiologic investigation were performed. Additionally, atrial histological and gene expression analyses were carried out. Post-mortem atrial weight data and histological examination confirmed marked atrial hypertrophy. We found increased atrial gene expression of antioxidant enzymes along with increased nitro-oxidative stress. No gene expression alteration was found regarding markers of pathological remodeling, apoptotic, proinflammatoric, and profibrotic processes. Exercise training was associated with a prolonged right atrial effective refractory period. We could not induce arrhythmias by programmed stimulation in any groups. We found decreased expression of potassium channels. Female gender was associated with lower profibrotic expression and collagen density. Long-term, balanced exercise training-induced atrial hypertrophy is not associated with harmful electrical remodeling, and no inflammatory or profibrotic response was observed in the atrium of exercised rats.

20.
ESC Heart Fail ; 8(3): 2220-2231, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33754487

RESUMEN

AIMS: While global longitudinal strain (GLS) is considered to be a sensitive marker of left ventricular (LV) function, it is significantly influenced by loading conditions. We hypothesized that global myocardial work index (GMWI), a novel marker of LV function, may show better correlation with load-independent markers of LV contractility in rat models of pressure-induced or volume overload-induced heart failure. METHODS AND RESULTS: Male Wistar rats underwent either transverse aortic constriction (TAC; n = 12) or aortocaval fistula creation (ACF; n = 12), inducing LV pressure or volume overload, respectively. Sham procedures were performed to establish control groups (n = 12/12). Echocardiographic loops were obtained to determine GLS and GMWI. Pressure-volume analysis with transient occlusion of the inferior caval vein was carried out to calculate preload recruitable stroke work (PRSW), a load-independent 'gold-standard' parameter of LV contractility. Myocardial samples were collected to assess interstitial and perivascular fibrosis area and also myocardial atrial-type natriuretic peptide (ANP) and brain-type natriuretic peptide (BNP) relative mRNA expression. Compared with controls, GLS was substantially lower in the TAC group (-7.0 ± 2.8 vs. -14.5 ± 2.5%; P < 0.001) and was only mildly reduced in the ACF group (-13.2 ± 2.4 vs. -15.4 ± 2.0%, P < 0.05). In contrast with these findings, PRSW and GMWI were comparable with sham in TAC (110 ± 26 vs. 116 ± 68 mmHg; 1687 ± 275 mmHg% vs. 1537 ± 662 mmHg%; both P = NS), while it was found to be significantly reduced in ACF (58 ± 14 vs. 111 ± 40 mmHg; 1328 ± 411 vs. 1934 ± 308 mmHg%, both P < 0.01). In the pooled population, GMWI (r = 0.70; P < 0.001) but not GLS (r = -0.23; P = 0.12) showed a strong correlation with PRSW. GLS correlated with interstitial (r = 0.61; P < 0.001) and perivascular fibrosis area (r = 0.54; P < 0.001), and also with myocardial ANP (r = 0.85; P < 0.001) and BNP relative mRNA expression (r = 0.75; P < 0.001), while GMWI demonstrated no or only marginal correlation with these parameters. CONCLUSIONS: Being significantly influenced by loading conditions, GLS may not be a reliable marker of LV contractility in heart failure induced by pressure or volume overload. GMWI better reflects contractility in haemodynamic overload states, making it a more robust marker of systolic function, while GLS should be considered as an integrative marker, incorporating systolic function, haemodynamic loading state, and adverse tissue remodelling of the LV.


Asunto(s)
Insuficiencia Cardíaca , Ventrículos Cardíacos , Animales , Insuficiencia Cardíaca/etiología , Ventrículos Cardíacos/diagnóstico por imagen , Masculino , Miocardio , Ratas , Ratas Wistar , Función Ventricular Izquierda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...