Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38712096

RESUMEN

Proper connection between the sperm head and tail is critical for sperm motility and fertilization. The link between the head and tail is mediated by the Head-Tail Coupling Apparatus (HTCA), which secures the axoneme (tail) to the nucleus (head). However, the molecular architecture of the HTCA is not well understood. Here, we use Drosophila to create a high-resolution map of proteins and structures at the HTCA throughout spermiogenesis. Using structured illumination microscopy, we demonstrate that key HTCA proteins Spag4 and Yuri form a 'Centriole Cap' that surrounds the centriole (or Basal Body) as it is inserted, or embedded into the surface of the nucleus. As development progresses, the centriole is laterally displaces to the side of the nucleus, during which time the HTCA expands under the nucleus, forming what we term the 'Nuclear Shelf.' We next show that the proximal centriole-like (PCL) structure is positioned under the Nuclear Shelf and functions as a critical stabilizer of the centriole-nuclear attachment. Together, our data indicate that the HTCA is complex, multi-point attachment site that simultaneously engages the PCL, the centriole, and the nucleus to ensure proper head-tail connection during late-stage spermiogenesis.

2.
J Cell Biol ; 223(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38512059

RESUMEN

Centrosomes are the primary microtubule organizer in eukaryotic cells. In addition to shaping the intracellular microtubule network and the mitotic spindle, centrosomes are responsible for positioning cilia and flagella. To fulfill these diverse functions, centrosomes must be properly located within cells, which requires that they undergo intracellular transport. Importantly, centrosome mispositioning has been linked to ciliopathies, cancer, and infertility. The mechanisms by which centrosomes migrate are diverse and context dependent. In many cells, centrosomes move via indirect motor transport, whereby centrosomal microtubules engage anchored motor proteins that exert forces on those microtubules, resulting in centrosome movement. However, in some cases, centrosomes move via direct motor transport, whereby the centrosome or centriole functions as cargo that directly binds molecular motors which then walk on stationary microtubules. In this review, we summarize the mechanisms of centrosome motility and the consequences of centrosome mispositioning and identify key questions that remain to be addressed.


Asunto(s)
Centriolos , Centrosoma , Transporte Biológico , Microtúbulos , Huso Acromático , Cilios , Humanos , Animales , Dineínas
3.
Trends Cancer ; 10(4): 289-311, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350736

RESUMEN

Cancer metastasis causes over 90% of cancer patient fatalities. Poor prognosis is determined by tumor type, the tumor microenvironment (TME), organ-specific biology, and animal physiology. While model organisms do not fully mimic the complexity of humans, many processes can be studied efficiently owing to the ease of genetic, developmental, and cell biology studies. For decades, Drosophila has been instrumental in identifying basic mechanisms controlling tumor growth and metastasis. The ability to generate clonal populations of distinct genotypes in otherwise wild-type animals makes Drosophila a powerful system to study tumor-host interactions at the local and global scales. This review discusses advancements in tumor biology, highlighting the strength of Drosophila for modeling TMEs and systemic responses in driving tumor progression and metastasis.


Asunto(s)
Drosophila , Neoplasias , Animales , Humanos , Microambiente Tumoral/genética , Neoplasias/genética , Neoplasias/patología
4.
Curr Biol ; 33(19): 4202-4216.e9, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37729913

RESUMEN

Proper centrosome number and function relies on the accurate assembly of centrioles, barrel-shaped structures that form the core duplicating elements of the organelle. The growth of centrioles is regulated in a cell cycle-dependent manner; while new daughter centrioles elongate during the S/G2/M phase, mature mother centrioles maintain their length throughout the cell cycle. Centriole length is controlled by the synchronized growth of the microtubules that ensheathe the centriole barrel. Although proteins exist that target the growing distal tips of centrioles, such as CP110 and Cep97, these proteins are generally thought to suppress centriolar microtubule growth, suggesting that distal tips may also contain unidentified counteracting factors that facilitate microtubule polymerization. Currently, a mechanistic understanding of how distal tip proteins balance microtubule growth and shrinkage to either promote daughter centriole elongation or maintain centriole length is lacking. Using a proximity-labeling screen in Drosophila cells, we identified Cep104 as a novel component of a group of evolutionarily conserved proteins that we collectively refer to as the distal tip complex (DTC). We found that Cep104 regulates centriole growth and promotes centriole elongation through its microtubule-binding TOG domain. Furthermore, analysis of Cep104 null flies revealed that Cep104 and Cep97 cooperate during spermiogenesis to align spermatids and coordinate individualization. Lastly, we mapped the complete DTC interactome and showed that Cep97 is the central scaffolding unit required to recruit DTC components to the distal tip of centrioles.


Asunto(s)
Centriolos , Proteínas Asociadas a Microtúbulos , Masculino , Animales , Centriolos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Drosophila/metabolismo , Centrosoma/metabolismo , Espermatogénesis , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
5.
Curr Biol ; 33(14): 3031-3040.e6, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37379844

RESUMEN

Centrosomes are multi-protein organelles that function as microtubule (MT) organizing centers (MTOCs), ensuring spindle formation and chromosome segregation during cell division.1,2,3 Centrosome structure includes core centrioles that recruit pericentriolar material (PCM) that anchors γ-tubulin to nucleate MTs.1,2 In Drosophila melanogaster, PCM organization depends on proper regulation of proteins like Spd-2, which dynamically localizes to centrosomes and is required for PCM, γ-tubulin, and MTOC activity in brain neuroblast (NB) mitosis and male spermatocyte (SC) meiosis.4,5,6,7,8 Some cells have distinct requirements for MTOC activity due to differences in characteristics like cell size9,10 or whether they are mitotic or meiotic.11,12 How centrosome proteins achieve cell-type-specific functional differences is poorly understood. Previous work identified alternative splicing13 and binding partners14 as contributors to cell-type-specific differences in centrosome function. Gene duplication, which can generate paralogs with specialized functions,15,16 is also implicated in centrosome gene evolution,17 including cell-type-specific centrosome genes.18,19 To gain insight into cell-type-specific differences in centrosome protein function and regulation, we investigated a duplication of Spd-2 in Drosophila willistoni, which has Spd-2A (ancestral) and Spd-2B (derived). We find that Spd-2A functions in NB mitosis, whereas Spd-2B functions in SC meiosis. Ectopically expressed Spd-2B accumulates and functions in mitotic NBs, but ectopically expressed Spd-2A failed to accumulate in meiotic SCs, suggesting cell-type-specific differences in translation or protein stability. We mapped this failure to accumulate and function in meiosis to the C-terminal tail domain of Spd-2A, revealing a novel regulatory mechanism that can potentially achieve differences in PCM function across cell types.


Asunto(s)
Proteínas del Citoesqueleto , Proteínas de Drosophila , Drosophila , Duplicación de Gen , Tubulina (Proteína) , Animales , Masculino , Centriolos/genética , Centriolos/metabolismo , Centrosoma/metabolismo , Drosophila/genética , Drosophila/metabolismo , Meiosis , Mitosis , Tubulina (Proteína)/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas de Drosophila/genética
6.
Mol Biol Cell ; 34(9): br15, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37342879

RESUMEN

Centrosomes are essential parts of diverse cellular processes, and precise regulation of the levels of their constituent proteins is critical for their function. One such protein is Pericentrin (PCNT) in humans and Pericentrin-like protein (PLP) in Drosophila. Increased PCNT expression and its protein accumulation are linked to clinical conditions including cancer, mental disorders, and ciliopathies. However, the mechanisms by which PCNT levels are regulated remain underexplored. Our previous study demonstrated that PLP levels are sharply down-regulated during early spermatogenesis and this regulation is essential to spatially position PLP on the proximal end of centrioles. We hypothesized that the sharp drop in PLP protein was a result of rapid protein degradation during the male germ line premeiotic G2 phase. Here, we show that PLP is subject to ubiquitin-mediated degradation and identify multiple proteins that promote the reduction of PLP levels in spermatocytes, including the UBR box containing E3 ligase Poe (UBR4), which we show binds to PLP. Although protein sequences governing posttranslational regulation of PLP are not restricted to a single region of the protein, we identify a region that is required for Poe-mediated degradation. Experimentally stabilizing PLP, via internal PLP deletions or loss of Poe, leads to PLP accumulation in spermatocytes, its mispositioning along centrioles, and defects in centriole docking in spermatids.


Asunto(s)
Centriolos , Ubiquitina-Proteína Ligasas , Masculino , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Centriolos/metabolismo , Centrosoma/metabolismo , Antígenos/metabolismo
7.
J Cell Biol ; 221(9)2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35929834

RESUMEN

Centrosome positioning is essential for their function. Typically, centrosomes are transported to various cellular locations through the interaction of centrosomal microtubules (MTs) with motor proteins anchored at the cortex or the nuclear surface. However, it remains unknown how centrioles migrate in cellular contexts in which they do not nucleate MTs. Here, we demonstrate that during interphase, inactive centrioles move directly along the interphase MT network as Kinesin-1 cargo. We identify Pericentrin-Like-Protein (PLP) as a novel Kinesin-1 interacting molecule essential for centriole motility. In vitro assays show that PLP directly interacts with the cargo binding domain of Kinesin-1, allowing PLP to migrate on MTs. Binding assays using purified proteins revealed that relief of Kinesin-1 autoinhibition is critical for its interaction with PLP. Finally, our studies of neural stem cell asymmetric divisions in the Drosophila brain show that the PLP-Kinesin-1 interaction is essential for the timely separation of centrioles, the asymmetry of centrosome activity, and the age-dependent centrosome inheritance.


Asunto(s)
Antígenos , Centriolos , Cinesinas , Animales , Antígenos/metabolismo , Proteínas de Unión a Calmodulina/metabolismo , Centriolos/metabolismo , Centrosoma/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Células-Madre Neurales , Transporte de Proteínas
8.
Development ; 149(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35297981

RESUMEN

Microcephaly is a failure to develop proper brain size and neuron number. Mutations in diverse genes are linked to microcephaly, including several with DNA damage repair (DDR) functions; however, it is not well understood how these DDR gene mutations limit brain size. One such gene is TRAIP, which has multiple functions in DDR. We characterized the Drosophila TRAIP homolog nopo, hereafter traip, and found that traip mutants (traip-) have a brain-specific defect in the mushroom body (MB). traip- MBs were smaller and contained fewer neurons, but no neurodegeneration, consistent with human primary microcephaly. Reduced neuron numbers in traip- were explained by premature loss of MB neuroblasts (MB-NBs), in part via caspase-dependent cell death. Many traip- MB-NBs had prominent chromosome bridges in anaphase, along with polyploidy, aneuploidy or micronuclei. Traip localization during mitosis is sufficient for MB development, suggesting that Traip can repair chromosome bridges during mitosis if necessary. Our results suggest that proper brain size is ensured by the recently described role for TRAIP in unloading stalled replication forks in mitosis, which suppresses DNA bridges and premature neural stem cell loss to promote proper neuron number.


Asunto(s)
Microcefalia , Cuerpos Pedunculados , Animales , Reparación del ADN , Drosophila , Microcefalia/genética , Neurogénesis
9.
EMBO J ; 40(18): e107336, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34309071

RESUMEN

During tumor growth-when nutrient and anabolic demands are high-autophagy supports tumor metabolism and growth through lysosomal organelle turnover and nutrient recycling. Ras-driven tumors additionally invoke non-autonomous autophagy in the microenvironment to support tumor growth, in part through transfer of amino acids. Here we uncover a third critical role of autophagy in mediating systemic organ wasting and nutrient mobilization for tumor growth using a well-characterized malignant tumor model in Drosophila melanogaster. Micro-computed X-ray tomography and metabolic profiling reveal that RasV12 ; scrib-/- tumors grow 10-fold in volume, while systemic organ wasting unfolds with progressive muscle atrophy, loss of body mass, -motility, -feeding, and eventually death. Tissue wasting is found to be mediated by autophagy and results in host mobilization of amino acids and sugars into circulation. Natural abundance Carbon 13 tracing demonstrates that tumor biomass is increasingly derived from host tissues as a nutrient source as wasting progresses. We conclude that host autophagy mediates organ wasting and nutrient mobilization that is utilized for tumor growth.


Asunto(s)
Autofagia , Metabolismo Energético , Neoplasias/etiología , Neoplasias/metabolismo , Nutrientes/metabolismo , Animales , Autofagia/genética , Caquexia/diagnóstico por imagen , Caquexia/etiología , Caquexia/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Drosophila melanogaster , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Neoplasias/complicaciones
10.
Nat Commun ; 12(1): 892, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563972

RESUMEN

Given their copy number differences and unique modes of inheritance, the evolved gene content and expression of sex chromosomes is unusual. In many organisms the X and Y chromosomes are inactivated in spermatocytes, possibly as a defense mechanism against insertions into unpaired chromatin. In addition to current sex chromosomes, Drosophila has a small gene-poor X-chromosome relic (4th) that re-acquired autosomal status. Here we use single cell RNA-Seq on fly larvae to demonstrate that the single X and pair of 4th chromosomes are specifically inactivated in primary spermatocytes, based on measuring all genes or a set of broadly expressed genes in testis we identified. In contrast, genes on the single Y chromosome become maximally active in primary spermatocytes. Reduced X transcript levels are due to failed activation of RNA-Polymerase-II by phosphorylation of Serine 2 and 5.


Asunto(s)
Drosophila/genética , Cromosomas Sexuales/genética , Espermatocitos/metabolismo , Animales , Drosophila/crecimiento & desarrollo , Regulación de la Expresión Génica , Genes Ligados a X/genética , Genes Ligados a Y/genética , Larva/genética , Larva/crecimiento & desarrollo , Masculino , Especificidad de Órganos , ARN Polimerasa II/metabolismo , Cromosomas Sexuales/metabolismo , Espermatogénesis/genética , Testículo/citología , Testículo/metabolismo , Transcripción Genética
11.
Dev Cell ; 53(1): 86-101.e7, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32169161

RESUMEN

The centriole, or basal body, is the center of attachment between the sperm head and tail. While the distal end of the centriole templates the cilia, the proximal end associates with the nucleus. Using Drosophila, we identify a centriole-centric mechanism that ensures proper proximal end docking to the nucleus. This mechanism relies on the restriction of pericentrin-like protein (PLP) and the pericentriolar material (PCM) to the proximal end of the centriole. PLP is restricted proximally by limiting its mRNA and protein to the earliest stages of centriole elongation. Ectopic positioning of PLP to more distal portions of the centriole is sufficient to redistribute PCM and microtubules along the entire centriole length. This results in erroneous, lateral centriole docking to the nucleus, leading to spermatid decapitation as a result of a failure to form a stable head-tail linkage.


Asunto(s)
Centriolos/metabolismo , Centrosoma/metabolismo , Microtúbulos/metabolismo , Cabeza del Espermatozoide/metabolismo , Cola del Espermatozoide/metabolismo , Animales , Cuerpos Basales/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Masculino
12.
J Cell Biol ; 219(2)2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31841145

RESUMEN

During centriole duplication, a preprocentriole forms at a single site on the mother centriole through a process that includes the hierarchical recruitment of a conserved set of proteins, including the Polo-like kinase 4 (Plk4), Ana2/STIL, and the cartwheel protein Sas6. Ana2/STIL is critical for procentriole assembly, and its recruitment is controlled by the kinase activity of Plk4, but how this works remains poorly understood. A structural motif called the G-box in the centriole outer wall protein Sas4 interacts with a short region in the N terminus of Ana2/STIL. Here, we show that binding of Ana2 to the Sas4 G-box enables hyperphosphorylation of the Ana2 N terminus by Plk4. Hyperphosphorylation increases the affinity of the Ana2-G-box interaction, and, consequently, promotes the accumulation of Ana2 at the procentriole to induce daughter centriole formation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Centriolos/genética , Proteínas de Drosophila/genética , Proteínas Serina-Treonina Quinasas/genética , Animales , Ciclo Celular/genética , Línea Celular , Drosophila melanogaster/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Asociadas a Microtúbulos/genética , Fosforilación/genética , Unión Proteica/genética
13.
Development ; 146(23)2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31722883

RESUMEN

Understanding how events at the molecular and cellular scales contribute to tissue form and function is key to uncovering the mechanisms driving animal development, physiology and disease. Elucidating these mechanisms has been enhanced through the study of model organisms and the use of sophisticated genetic, biochemical and imaging tools. Here, we present an accessible method for non-invasive imaging of Drosophila melanogaster at high resolution using micro-computed tomography (µ-CT). We show how rapid processing of intact animals, at any developmental stage, provides precise quantitative assessment of tissue size and morphology, and permits analysis of inter-organ relationships. We then use µ-CT imaging to study growth defects in the Drosophila brain through the characterization of abnormal spindle (asp) and WD repeat domain 62 (Wdr62), orthologs of the two most commonly mutated genes in human microcephaly patients. Our work demonstrates the power of combining µ-CT with traditional genetic, cellular and developmental biology tools available in model organisms to address novel biological mechanisms that control animal development and disease.


Asunto(s)
Proteínas de Drosophila , Embrión no Mamífero , Microcefalia , Mutación , Proteínas del Tejido Nervioso , Microtomografía por Rayos X , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Embrión no Mamífero/diagnóstico por imagen , Embrión no Mamífero/embriología , Humanos , Microcefalia/diagnóstico por imagen , Microcefalia/embriología , Microcefalia/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
14.
Mol Biol Cell ; 30(8): 992-1007, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30726162

RESUMEN

Cell division is critical for development, organ growth, and tissue repair. The later stages of cell division include the formation of the microtubule (MT)-rich central spindle in anaphase, which is required to properly define the cell equator, guide the assembly of the acto-myosin contractile ring and ultimately ensure complete separation and isolation of the two daughter cells via abscission. Much is known about the molecular machinery that forms the central spindle, including proteins needed to generate the antiparallel overlapping interzonal MTs. One critical protein that has garnered great attention is the protein regulator of cytokinesis 1, or Fascetto (Feo) in Drosophila, which forms a homodimer to cross-link interzonal MTs, ensuring proper central spindle formation and cytokinesis. Here, we report on a new direct protein interactor and regulator of Feo we named Feo interacting protein (FIP). Loss of FIP results in a reduction in Feo localization, rapid disassembly of interzonal MTs, and several defects related to cytokinesis failure, including polyploidization of neural stem cells. Simultaneous reduction in Feo and FIP results in very large, tumorlike DNA-filled masses in the brain that contain hundreds of centrosomes. In aggregate, our data show that FIP acts directly on Feo to ensure fully accurate cell division.


Asunto(s)
Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/metabolismo , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/metabolismo , Anafase/fisiología , Animales , División Celular/fisiología , Centrosoma/metabolismo , Citocinesis , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Desarrollo Embrionario , Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos/metabolismo , Miosinas/metabolismo , Dominios y Motivos de Interacción de Proteínas/fisiología , Huso Acromático/metabolismo
15.
Essays Biochem ; 62(6): 793-801, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30429283

RESUMEN

Throughout biology, specifying cellular events at the correct location and time is necessary for ensuring proper function. The formation of robust microtubule organizing centers (MTOCs) in mitosis is one such event that must be restricted in space to centrosomes to prevent ectopic MTOC formation elsewhere in the cell, a situation that can result in multipolar spindle formation and aneuploidy. The process of reaching maximum centrosome MTOC activity in late G2, known as centrosome maturation, ensures accurate timing of nuclear envelope breakdown and proper chromosome attachment. Although centrosome maturation has been recognized for over a century, the spatial and temporal regulatory mechanisms that direct MTOC activation are poorly understood. Here, we review Sas-4/CPAP, Asterless/Cep152, Spd-2/Cep192, and PLP/Pericentrin, a group of proteins we refer to as 'bridge' proteins that reside at the surface of centrioles, perfectly positioned to serve as the gatekeepers of proper centrosome maturation at the perfect place and time.


Asunto(s)
Centriolos/metabolismo , Centrosoma/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis , Animales , Humanos
16.
Mol Biol Cell ; 29(23): 2874-2886, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30256714

RESUMEN

Centriole assembly initiates when Polo-like kinase 4 (Plk4) interacts with a centriole "targeting-factor." In Drosophila, Asterless/Asl (Cep152 in humans) fulfills the targeting role. Interestingly, Asl also regulates Plk4 levels. The N-terminus of Asl (Asl-A; amino acids 1-374) binds Plk4 and promotes Plk4 self-destruction, although it is unclear how this is achieved. Moreover, Plk4 phosphorylates the Cep152 N-terminus, but the functional consequence is unknown. Here, we show that Plk4 phosphorylates Asl and mapped 13 phospho-residues in Asl-A. Nonphosphorylatable alanine (13A) and phosphomimetic (13PM) mutants did not alter Asl function, presumably because of the dominant role of the Asl C-terminus in Plk4 stabilization and centriolar targeting. To address how Asl-A phosphorylation specifically affects Plk4 regulation, we generated Asl-A fragment phospho-mutants and expressed them in cultured Drosophila cells. Asl-A-13A stimulated kinase activity by relieving Plk4 autoinhibition. In contrast, Asl-A-13PM inhibited Plk4 activity by a novel mechanism involving autophosphorylation of Plk4's kinase domain. Thus, Asl-A's phosphorylation state determines which of Asl-A's two opposing effects are exerted on Plk4. Initially, nonphosphorylated Asl binds Plk4 and stimulates its kinase activity, but after Asl is phosphorylated, a negative-feedback mechanism suppresses Plk4 activity. This dual regulatory effect by Asl-A may limit Plk4 to bursts of activity that modulate centriole duplication.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Centriolos/metabolismo , Drosophila , Fosforilación , Unión Proteica
17.
J Cell Biol ; 217(4): 1217-1231, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29496738

RESUMEN

Polo-like kinase 4 (Plk4) initiates an early step in centriole assembly by phosphorylating Ana2/STIL, a structural component of the procentriole. Here, we show that Plk4 binding to the central coiled-coil (CC) of Ana2 is a conserved event involving Polo-box 3 and a previously unidentified putative CC located adjacent to the kinase domain. Ana2 is then phosphorylated along its length. Previous studies showed that Plk4 phosphorylates the C-terminal STil/ANa2 (STAN) domain of Ana2/STIL, triggering binding and recruitment of the cartwheel protein Sas6 to the procentriole assembly site. However, the physiological relevance of N-terminal phosphorylation was unknown. We found that Plk4 first phosphorylates the extreme N terminus of Ana2, which is critical for subsequent STAN domain modification. Phosphorylation of the central region then breaks the Plk4-Ana2 interaction. This phosphorylation pattern is important for centriole assembly and integrity because replacement of endogenous Ana2 with phospho-Ana2 mutants disrupts distinct steps in Ana2 function and inhibits centriole duplication.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Centriolos/enzimología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Línea Celular , Centriolos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Transducción de Señal
18.
Mol Biol Cell ; 29(3): 241-246, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29382806

RESUMEN

An intimate link between centrosome function and neurogenesis is revealed by the identification of many genes with centrosome-associated functions that are mutated in microcephaly disorders. Consistent with the major role of the centrosome in mitosis, mutations in these centrosome-related microcephaly (CRM) genes are thought to affect neurogenesis by depleting the pool of neural progenitor cells, primarily through apoptosis as a consequence of mitotic failure or premature differentiation as a consequence of cell cycle delay and randomization of spindle orientation. However, as suggested by the wide range of microcephaly phenotypes and the multifunctional nature of many CRM proteins, this picture of CRM gene function is incomplete. Here, we explore several examples of CRM genes pointing to additional functions that contribute to microcephaly, including regulation of cell cycle signaling, actin cytoskeleton, and Hippo pathway proteins, as well as functions in postmitotic neurons and glia. As these examples are likely just the tip of the iceberg, further exploration of the roles of microcephaly-related genes are certain to reveal additional unforeseen functions important for neurodevelopment.


Asunto(s)
Centrosoma/metabolismo , Microcefalia/genética , Microcefalia/metabolismo , Actinas , Animales , Apoptosis , Ciclo Celular/genética , Diferenciación Celular , Centrosoma/fisiología , Citoesqueleto , Humanos , Mitosis , Mutación , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Transducción de Señal , Huso Acromático/metabolismo
19.
PLoS One ; 13(1): e0190530, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29315319

RESUMEN

The centrosome serves as the main microtubule-organizing center in metazoan cells, yet despite its functional importance, little is known mechanistically about the structure and organizational principles that dictate protein organization in the centrosome. In particular, the protein-protein interactions that allow for the massive structural transition between the tightly organized interphase centrosome and the highly expanded matrix-like arrangement of the mitotic centrosome have been largely uncharacterized. Among the proteins that undergo a major transition is the Drosophila melanogaster protein centrosomin that contains a conserved carboxyl terminus motif, CM2. Recent crystal structures have shown this motif to be dimeric and capable of forming an intramolecular interaction with a central region of centrosomin. Here we use a combination of in-cell microscopy and in vitro oligomer assessment to show that dimerization is not necessary for CM2 recruitment to the centrosome and that CM2 alone undergoes significant cell cycle dependent rearrangement. We use NMR binding assays to confirm this intramolecular interaction and show that residues involved in solution are consistent with the published crystal structure and identify L1137 as critical for binding. Additionally, we show for the first time an in vitro interaction of CM2 with the Drosophila pericentrin-like-protein that exploits the same set of residues as the intramolecular interaction. Furthermore, NMR experiments reveal a calcium sensitive interaction between CM2 and calmodulin. Although unexpected because of sequence divergence, this suggests that centrosomin-mediated assemblies, like the mammalian pericentrin, may be calcium regulated. From these results, we suggest an expanded model where during interphase CM2 interacts with pericentrin-like-protein to form a layer of centrosomin around the centriole wall and that at the onset of mitosis this population acts as a nucleation site of intramolecular centrosomin interactions that support the expansion into the metaphase matrix.


Asunto(s)
Ciclo Celular/fisiología , Proteínas de Drosophila/metabolismo , Proteínas de Homeodominio/metabolismo , Animales , Sitios de Unión , Proteínas de Drosophila/fisiología , Drosophila melanogaster , Proteínas de Homeodominio/fisiología , Resonancia Magnética Nuclear Biomolecular , Reacción en Cadena de la Polimerasa , Unión Proteica , Técnicas del Sistema de Dos Híbridos
20.
Mol Biol Cell ; 29(3): 285-294, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29187574

RESUMEN

XMAP215/Dis1 family proteins are potent microtubule polymerases, critical for mitotic spindle structure and dynamics. While microtubule polymerase activity is driven by an N-terminal tumor overexpressed gene (TOG) domain array, proper cellular localization is a requisite for full activity and is mediated by a C-terminal domain. Structural insight into the C-terminal domain's architecture and localization mechanism remain outstanding. We present the crystal structure of the Saccharomyces cerevisiae Stu2 C-terminal domain, revealing a 15-nm parallel homodimeric coiled coil. The parallel architecture of the coiled coil has mechanistic implications for the arrangement of the homodimer's N-terminal TOG domains during microtubule polymerization. The coiled coil has two spatially distinct conserved regions: CRI and CRII. Mutations in CRI and CRII perturb the distribution and localization of Stu2 along the mitotic spindle and yield defects in spindle morphology including increased frequencies of mispositioned and fragmented spindles. Collectively, these data highlight roles for the Stu2 dimerization domain as a scaffold for factor binding that optimally positions Stu2 on the mitotic spindle to promote proper spindle structure and dynamics.


Asunto(s)
Cinetocoros/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Unión Proteica , Dominios Proteicos/fisiología , Elementos Estructurales de las Proteínas/fisiología , Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo , Huso Acromático/fisiología , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...