Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Endocrinology ; 151(7): 3420-31, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20410206

RESUMEN

The prostate gland develops from the urogenital sinus in response to circulating androgens. Androgens initiate and stimulate branching morphogenesis in the urogenital sinus via unknown mediators. Heparan sulfate proteoglycans are important extracellular molecules that sequester many growth factors in the extracellular matrix and facilitate signaling by some growth factors as part of ternary complexes that include growth factors, receptors, and heparan sulfate chains. Several enzymes modify the chemical structure of heparan sulfate to further regulate its activity. An examination of these enzymes for sexually dimorphic expression in the urogenital sinus identified Sulfatase 1 (Sulf1) as an enzyme that was down-regulated in the male urogenital sinus coincident with the initiation of prostatic morphogenesis. Down-regulation of Sulf1 was accompanied by an increase in the most highly sulfated forms of heparan sulfate, and a similar increase was observed in female urogenital sinuses treated with testosterone. Inhibiting de novo sulfation of heparan sulfate blocked prostatic morphogenesis, supporting the importance of heparan sulfate modification for prostate development. To functionally test the specific role of Sulf1 during prostate development, Sulf1 was ectopically expressed in the urogenital sinus. It partially inhibited testosterone-stimulated ductal morphogenesis, and it reduced the activation of fibroblast growth factor receptors as well as the ERK1 and ERK2 MAPKs. These data identify sulfatase 1 as an inhibitor of prostatic branching morphogenesis and growth factor signaling that is down-regulated as part of the normal response to androgen action in the male urogenital sinus.


Asunto(s)
Próstata/embriología , Sulfotransferasas/metabolismo , Animales , Western Blotting , Cromatografía Líquida de Alta Presión , Femenino , Proteoglicanos de Heparán Sulfato/metabolismo , Inmunohistoquímica , Masculino , Ratones , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Morfogénesis/efectos de los fármacos , Morfogénesis/genética , Fosforilación , Próstata/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sulfotransferasas/genética , Testosterona/farmacología
2.
PLoS Genet ; 4(7): e1000136, 2008 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-18654627

RESUMEN

Mutations in human Exostosin genes (EXTs) confer a disease called Hereditary Multiple Exostoses (HME) that affects 1 in 50,000 among the general population. Patients with HME have a short stature and develop osteochondromas during childhood. Here we show that two zebrafish mutants, dackel (dak) and pinscher (pic), have cartilage defects that strongly resemble those seen in HME patients. We have previously determined that dak encodes zebrafish Ext2. Positional cloning of pic reveals that it encodes a sulphate transporter required for sulphation of glycans (Papst1). We show that although both dak and pic are required during cartilage morphogenesis, they are dispensable for chondrocyte and perichondral cell differentiation. They are also required for hypertrophic chondrocyte differentiation and osteoblast differentiation. Transplantation analysis indicates that dak(-/-) cells are usually rescued by neighbouring wild-type chondrocytes. In contrast, pic(-/-) chondrocytes always act autonomously and can disrupt the morphology of neighbouring wild-type cells. These findings lead to the development of a new model to explain the aetiology of HME.


Asunto(s)
Proteínas de Transporte de Anión/genética , Regulación del Desarrollo de la Expresión Génica , N-Acetilglucosaminiltransferasas/genética , Osteogénesis/genética , Proteínas de Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Animales , Proteínas de Transporte de Anión/fisiología , Clonación Molecular , Embrión no Mamífero , Marcadores Genéticos , Homocigoto , Pérdida de Heterocigocidad , Repeticiones de Microsatélite , Modelos Animales , Mutación , N-Acetilglucosaminiltransferasas/fisiología , Osteogénesis/fisiología , Mapeo Físico de Cromosoma , ARN Mensajero/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/fisiología
3.
Dev Biol ; 284(2): 364-76, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16009360

RESUMEN

Heparan sulfate proteoglycans are important modulators of growth factor signaling in a variety of patterning processes. Secreted growth factors that play critical roles in angiogenesis bind to heparan sulfate, and this association is affected by 6-O-sulfation of the heparan sulfate chains. Addition of 6-O-sulfate is catalyzed by a family of sulfotransferases (HS6STs), and genetic manipulation of their function permits an assessment of their contribution to vascular assembly. We report on the biochemical activity and expression patterns of two zebrafish HS6ST genes. In situ hybridization reveals dynamic and distinct expression patterns of these two genes during development. Structural analysis of heparan sulfate from wild-type and morpholino antisense 'knockdown' embryos suggests that HS6ST-1 and HS6ST-2 have similar biochemical activity. HS6ST-2, but not HS6ST-1, morphants exhibit abnormalities in the branching morphogenesis of the caudal vein during embryonic development of the zebrafish. Our finding that HS6ST-2 is required for the branching morphogenesis of the caudal vein is the first in vivo evidence for an essential role of a gene encoding a heparan sulfate modifying enzyme in vertebrate angiogenesis. Our analysis of two zebrafish HS6ST genes suggests that a wide range of biological processes may be regulated by an array of sulfation-modifying enzymes in the vertebrate genome.


Asunto(s)
Vasos Sanguíneos/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Sulfotransferasas/metabolismo , Pez Cebra/embriología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Vasos Sanguíneos/embriología , Clonación Molecular , Embrión no Mamífero , Desarrollo Embrionario , Etiquetas de Secuencia Expresada , Proteínas Fluorescentes Verdes/metabolismo , Heparitina Sulfato/metabolismo , Hibridación in Situ , Microinyecciones , Datos de Secuencia Molecular , Oligonucleótidos Antisentido/farmacología , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Somitos/metabolismo , Sulfotransferasas/antagonistas & inhibidores , Sulfotransferasas/química , Sulfotransferasas/genética , Sulfotransferasas/aislamiento & purificación
4.
Neuron ; 44(6): 947-60, 2004 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-15603738

RESUMEN

Retinal ganglion cell (RGC) axons are topographically ordered in the optic tract according to their retinal origin. In zebrafish dackel (dak) and boxer (box) mutants, some dorsal RGC axons missort in the optic tract but innervate the tectum topographically. Molecular cloning reveals that dak and box encode ext2 and extl3, glycosyltransferases implicated in heparan sulfate (HS) biosynthesis. Both genes are required for HS synthesis, as shown by biochemical and immunohistochemical analysis, and are expressed maternally and then ubiquitously, likely playing permissive roles. Missorting in box can be rescued by overexpression of extl3. dak;box double mutants show synthetic pathfinding phenotypes that phenocopy robo2 mutants, suggesting that Robo2 function requires HS in vivo; however, tract sorting does not require Robo function, since it is normal in robo2 null mutants. This genetic evidence that heparan sulfate proteoglycan function is required for optic tract sorting provides clues to begin understanding the underlying molecular mechanisms.


Asunto(s)
Axones/metabolismo , Proteoglicanos de Heparán Sulfato/biosíntesis , N-Acetilglucosaminiltransferasas/fisiología , Vías Visuales/metabolismo , Proteínas de Pez Cebra/fisiología , Animales , Proteoglicanos de Heparán Sulfato/genética , Datos de Secuencia Molecular , N-Acetilglucosaminiltransferasas/biosíntesis , N-Acetilglucosaminiltransferasas/genética , Células Ganglionares de la Retina/metabolismo , Vías Visuales/embriología , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...