Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39345469

RESUMEN

Most of Earth's iron is mineral-bound, but it is unclear how and to what extent iron-oxidizing microbes can use solid minerals as electron donors. A prime candidate for studying mineral-oxidizing growth and pathways is Sideroxydans lithotrophicus ES-1, a robust, facultative iron oxidizer with multiple possible iron oxidation mechanisms. These include Cyc2 and Mto pathways plus other multiheme cytochromes and cupredoxins, and so we posit that the mechanisms may correspond to different Fe(II) sources. Here, S. lithotrophicus ES-1 was grown on dissolved Fe(II)-citrate and magnetite. S. lithotrophicus ES-1 oxidized all dissolved Fe 2+ released from magnetite, and continued to build biomass when only solid Fe(II) remained, suggesting it can utilize magnetite as a solid electron donor. Quantitative proteomic analyses of S. lithotrophicus ES-1 grown on these substrates revealed global proteome remodeling in response to electron donor and growth state and uncovered potential proteins and metabolic pathways involved in the oxidation of solid magnetite. While the Cyc2 iron oxidases were highly expressed on both dissolved and solid substrates, MtoA was only detected during growth on solid magnetite, suggesting this protein helps catalyze oxidation of solid minerals in S. lithotrophicus ES-1. A set of cupredoxin domain-containing proteins were also specifically expressed during solid iron oxidation. This work demonstrated the iron oxidizer S. lithotrophicus ES-1 utilized additional extracellular electron transfer pathways when growing on solid mineral electron donors compared to dissolved Fe(II). Importance: Mineral-bound iron could be a vast source of energy to iron-oxidizing bacteria, but there is limited evidence of this metabolism, and it has been unknown whether the mechanisms of solid and dissolved Fe(II) oxidation are distinct. In iron-reducing bacteria, multiheme cytochromes can facilitate iron mineral reduction, and here, we link a multiheme cytochrome-based pathway to mineral oxidation, broadening the known functionality of multiheme cytochromes. Given the growing recognition of microbial oxidation of minerals and cathodes, increasing our understanding of these mechanisms will allow us to recognize and trace the activities of mineral-oxidizing microbes. This work shows how solid iron minerals can promote microbial growth, which if widespread, could be a major agent of geologic weathering and mineral-fueled nutrient cycling in sediments, aquifers, and rock-hosted environments.

2.
Sci Total Environ ; 934: 173046, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38735326

RESUMEN

Although marine environments represent huge reservoirs of the potent greenhouse gas methane, they currently contribute little to global net methane emissions. Most of the methane is oxidized by methanotrophs, minimizing escape to the atmosphere. Aerobic methanotrophs oxidize methane mostly via the copper (Cu)-bearing enzyme particulate methane monooxygenase (pMMO). Therefore, aerobic methane oxidation depends on sufficient Cu acquisition by methanotrophs. Because they require both oxygen and methane, aerobic methanotrophs reside at oxic-anoxic interfaces, often close to sulphidic zones where Cu bioavailability can be limited by poorly soluble Cu sulphide mineral phases. Under Cu-limiting conditions, certain aerobic methanotrophs exude Cu-binding ligands termed chalkophores, such as methanobactin (mb) exuded by Methylosinus trichosporium OB3b. Our main objective was to establish whether chalkophores can mobilise Cu from Cu sulphide-bearing marine sediments to enhance Cu bioavailability. Through a series of kinetic batch experiments, we investigated Cu mobilisation by mb from a set of well-characterized sulphidic marine sediments differing in sediment properties, including Cu content and phase distribution. Characterization of solid-phase Cu speciation included X-ray absorption spectroscopy and a targeted sequential extraction. Furthermore, in batch experiments, we investigated to what extent adsorption of metal-free mb and Cu-mb complexes to marine sediments constrains Cu mobilisation. Our results are the first to show that both solid phase Cu speciation and chalkophore adsorption can constrain methanotrophic Cu acquisition from marine sediments. Only for certain sediments did mb addition enhance dissolved Cu concentrations. Cu mobilisation by mb was not correlated to the total Cu content of the sediment, but was controlled by solid-phase Cu speciation. Cu was only mobilised from sediments containing a mono-Cu-sulphide (CuSx) phase. We also show that mb adsorption to sediments limits Cu acquisition by mb to less compact (surface) sediments. Therefore, in sulphidic sediments, mb-mediated Cu acquisition is presumably constrained to surface-sediment interfaces containing mono-Cu-sulphide phases.


Asunto(s)
Cobre , Sedimentos Geológicos , Imidazoles , Methylosinus trichosporium , Oligopéptidos , Cobre/metabolismo , Sedimentos Geológicos/química , Oligopéptidos/metabolismo , Imidazoles/metabolismo , Imidazoles/química , Methylosinus trichosporium/metabolismo , Oxidación-Reducción , Metano/metabolismo , Oxigenasas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis
3.
Geobiology ; 20(5): 690-706, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35716154

RESUMEN

Aerobic methane oxidation (MOx) depends critically on the availability of copper (Cu) as a crucial component of the metal centre of particulate methane monooxygenase, one of the main enzymes involved in MOx. Some methanotrophs have developed Cu acquisition strategies, in which they exude Cu-binding ligands termed chalkophores under conditions of low Cu availability. A well-characterised chalkophore is methanobactin (mb), exuded by the microaerophilic methanotroph Methylosinus trichosporium OB3b. Aerobic methanotrophs generally reside close to environmental oxic-anoxic interfaces, where the formation of Cu sulphide phases can aggravate the limitation of bioavailable Cu due to their low solubility. The reactivity of chalkophores towards such Cu sulphide mineral phases has not yet been investigated. In this study, a combination of dissolution experiments and equilibrium modelling was used to examine the dissolution and solubility of bulk and nanoparticulate Cu sulphide minerals in the presence of mb as influenced by pH, oxygen and natural organic matter. In general, we show that mb is effective at increasing the dissolved Cu concentrations in the presence of a variety of Cu sulphide phases that may potentially limit Cu bioavailability. More Cu was mobilised per mole of mb from Cu sulphide nanoparticles compared with well-crystalline bulk covellite (CuS). In general, the efficacy of mb at mobilising Cu from Cu sulphides is pH-dependent. At lower pH, e.g. pH 5, mb was ineffective at solubilizing Cu. The presence of mb increased dissolved Cu concentrations between pH 7 and 8.5, where the solubility of all Cu sulphides is generally low, both in the presence and absence of oxygen. These results suggest that chalkophore-promoted Cu mobilisation from sulphide phases is an effective extracellular mechanism for increasing dissolved Cu concentrations at oxic-anoxic interfaces, particularly in the neutral to slightly alkaline pH range. This suggests that aerobic methanotrophs may be able to fulfil their Cu requirements via the exudation of mb in natural environments where the bioavailability of Cu is constrained by very stable Cu sulphide phases.


Asunto(s)
Cobre , Methylosinus trichosporium , Cobre/química , Concentración de Iones de Hidrógeno , Imidazoles , Methylosinus trichosporium/química , Minerales , Oligopéptidos , Oxígeno , Sulfuros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA