Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8938, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637629

RESUMEN

Heart failure is a serious medical condition with a poor prognosis. Current treatments can only help manage the symptoms and slow the progression of heart failure. However, there is currently no cure to prevent and reverse cardiac remodeling. Transcription factors are in a central role in various cellular processes, and in the heart, GATA4 and NKX2-5 transcription factors mediate hypertrophic responses and remodeling. We have identified compounds that modulate the synergistic interaction of GATA4 and NKX2-5 and shown that the most promising compound (1, 3i-1000) is cardioprotective in vitro and in vivo. However, direct evidence of its binding site and mechanism of action has not been available. Due to the disordered nature of transcription factors, classical target engagement approaches cannot be utilized. Here, we synthesized a small-molecule ligand-binding pulldown probe of compound 1 to utilize affinity chromatography alongside CETSA, AlphaScreen, and molecular modeling to study ligand binding. These results provide the first evidence of direct physical binding of compound 1 selectively to GATA4. While developing drugs that target transcription factors presents challenges, advances in technologies and knowledge of intrinsically disordered proteins enable the identification of small molecules that can selectively target transcription factors.


Asunto(s)
Insuficiencia Cardíaca , Factores de Transcripción , Humanos , Proteína Homeótica Nkx-2.5/metabolismo , Ligandos , Factores de Transcripción/metabolismo , Cromatografía de Afinidad , Factor de Transcripción GATA4/metabolismo , Proteínas de Homeodominio/metabolismo
2.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166689, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36958711

RESUMEN

Heart formation requires transcriptional regulators that underlie congenital anomalies and the fetal gene program activated during heart failure. Attributing the effects of congenital heart disease (CHD) missense variants to disruption of specific protein domains allows for a mechanistic understanding of CHDs and improved diagnostics. A combined chemical and genetic approach was employed to identify novel CHD drivers, consisting of chemical screening during pluripotent stem cell (PSC) differentiation, gene expression analyses of native tissues and primary cell culture models, and the in vitro study of damaging missense variants from CHD patients. An epigenetic inhibitor of the TATA-Box Binding Protein Associated Factor 1 (TAF1) bromodomain was uncovered in an unbiased chemical screen for activators of atrial and ventricular fetal myosins in differentiating PSCs, leading to the development of a high affinity inhibitor (5.1 nM) of the TAF1 bromodomain, a component of the TFIID complex. TAF1 bromodomain inhibitors were tested for their effects on stem cell viability and cardiomyocyte differentiation, implicating a role for TAF1 in cardiogenesis. Damaging TAF1 missense variants from CHD patients were studied by mutational analysis of the TAF1 bromodomain, demonstrating a repressive role of TAF1 that can be abrogated by the introduction of damaging bromodomain variants or chemical TAF1 bromodomain inhibition. These results indicate that targeting the TAF1/TFIID complex with chemical compounds modulates cardiac transcription and identify an epigenetically-driven CHD mechanism due to damaging variants within the TAF1 bromodomain.


Asunto(s)
Cardiopatías Congénitas , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Dominios Proteicos , Proteínas Nucleares/metabolismo , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo , Cardiopatías Congénitas/genética , Epigénesis Genética
3.
Peptides ; 136: 170459, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33249116

RESUMEN

The procholecystokinin (proCCK) gene encodes a secreted peptide known to regulate the digestive, endocrine, and nervous systems. Though recently proposed as a biomarker for heart dysfunction, its physiological role in both the embryonic and adult heart is poorly understood, and there are no reports of tissue-specific regulators of cholecystokinin signaling in the heart or other tissues. In the present study, mRNA of proCCK was observed in cardiac tissues during mouse embryonic development, establishing proCCK as an early marker of differentiated cardiomyocytes which is later restricted to anatomical subdomains of the neonatal heart. Three-dimensional analysis of the expression of proCCK and CCKAR/CCKBR receptors was performed using in situ hybridization and optical projection tomography, illustrating chamber-specific expression patterns in the postnatal heart. Transcription factor motif analyses indicated developmental cardiac transcription factors TBX5 and MEF2C as upstream regulators of proCCK, and this regulatory activity was confirmed in reporter gene assays. proCCK mRNA levels were also measured in the infarcted heart and in response to cyclic mechanical stretch and endothelin-1, indicating dynamic transcriptional regulation which might be leveraged for improved biomarker development. Functional analyses of exogenous cholecystokinin octapeptide (CCK-8) administration were performed in differentiating mouse embryonic stem cells (mESCs), and the results suggest that CCK-8 does not act as a differentiation modulator of cardiomyocyte subtypes. Collectively, these findings indicate that proCCK is regulated at the transcriptional level by TBX5-MEF2 and neurohormonal signaling, informing use of proCCK as a biomarker and future strategies for upstream manipulation of cholecystokinin signaling in the heart and other tissues.


Asunto(s)
Colecistoquinina/genética , Corazón/crecimiento & desarrollo , Factores de Transcripción MEF2/genética , Proteínas de Dominio T Box/genética , Animales , Diferenciación Celular/genética , Desarrollo Embrionario/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , Células Madre Embrionarias de Ratones , Péptidos/genética , Embarazo , Transducción de Señal/genética
4.
ACS Appl Mater Interfaces ; 12(6): 6899-6909, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31967771

RESUMEN

Heart tissue engineering is critical in the treatment of myocardial infarction, which may benefit from drug-releasing smart materials. In this study, we load a small molecule (3i-1000) in new biodegradable and conductive patches for application in infarcted myocardium. The composite patches consist of a biocompatible elastomer, poly(glycerol sebacate) (PGS), coupled with collagen type I, used to promote cell attachment. In addition, polypyrrole is incorporated because of its electrical conductivity and to induce cell signaling. Results from the in vitro experiments indicate a high density of cardiac myoblast cells attached on the patches, which stay viable for at least 1 month. The degradation of the patches does not show any cytotoxic effect, while 3i-1000 delivery induces cell proliferation. Conductive patches show high blood wettability and drug release, correlating with the rate of degradation of the PGS matrix. Together with the electrical conductivity and elongation characteristics, the developed biomaterial fits the mechanical, conductive, and biological demands required for cardiac treatment.


Asunto(s)
Decanoatos/química , Sistemas de Liberación de Medicamentos/métodos , Glicerol/análogos & derivados , Infarto del Miocardio/tratamiento farmacológico , Polímeros/química , Bibliotecas de Moléculas Pequeñas/química , Animales , Sistemas de Liberación de Medicamentos/instrumentación , Conductividad Eléctrica , Glicerol/química , Humanos , Ensayo de Materiales , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Nanopartículas/química , Pirroles/química , Bibliotecas de Moléculas Pequeñas/farmacología
5.
IUBMB Life ; 72(1): 68-79, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31419020

RESUMEN

Various strategies have been applied to replace the loss of cardiomyocytes in order to restore reduced cardiac function and prevent the progression of heart disease. Intensive research efforts in the field of cellular reprogramming and cell transplantation may eventually lead to efficient in vivo applications for the treatment of cardiac injuries, representing a novel treatment strategy for regenerative medicine. Modulation of cardiac transcription factor (TF) networks by chemical entities represents another viable option for therapeutic interventions. Comprehensive screening projects have revealed a number of molecular entities acting on molecular pathways highly critical for cellular lineage commitment and differentiation, including compounds targeting Wnt- and transforming growth factor beta (TGFß)-signaling. Furthermore, previous studies have demonstrated that GATA4 and NKX2-5 are essential TFs in gene regulation of cardiac development and hypertrophy. For example, both of these TFs are required to fully activate mechanical stretch-responsive genes such as atrial natriuretic peptide and brain natriuretic peptide (BNP). We have previously reported that the compound 3i-1000 efficiently inhibited the synergy of the GATA4-NKX2-5 interaction. Cellular effects of 3i-1000 have been further characterized in a number of confirmatory in vitro bioassays, including rat cardiac myocytes and animal models of ischemic injury and angiotensin II-induced pressure overload, suggesting the potential for small molecule-induced cardioprotection.


Asunto(s)
Desarrollo Embrionario , Factor de Transcripción GATA4/metabolismo , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Organogénesis , Animales , Factor de Transcripción GATA4/genética , Humanos , Transducción de Señal
6.
Arch Toxicol ; 94(2): 631-645, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31811323

RESUMEN

Reliable in vitro models to assess developmental toxicity of drugs and chemicals would lead to improvement in fetal safety and a reduced cost of drug development. The validated embryonic stem cell test (EST) uses cardiac differentiation of mouse embryonic stem cells (mESCs) to predict in vivo developmental toxicity, but does not take into account the stage-specific patterning of progenitor populations into anterior (ventricular) and posterior (atrial) compartments. In this study, we generated a novel dual reporter mESC line with fluorescent reporters under the control of anterior and posterior cardiac promoters. Reporter expression was observed in nascent compartments in transgenic mouse embryos, and mESCs were used to develop differentiation assays in which chemical modulators of Wnt (XAV939: 3, 10 µM), retinoic acid (all-trans retinoic acid: 0.1, 1, 10 µM; 9-cis retinoic acid: 0.1, 1, 10 µM; bexarotene 0.1, 1, 10 µM), and Tgf-ß (SB431542: 3, 10 µM) pathways were tested for stage- and dose-dependent effects on in vitro anterior-posterior patterning. Our results suggest that with further development, the inclusion of anterior-posterior reporter expression could be part of a battery of high-throughput tests used to identify and characterize teratogens.


Asunto(s)
Genes Reporteros , Proteínas Fluorescentes Verdes , Corazón/efectos de los fármacos , Células Madre Embrionarias de Ratones/citología , Teratógenos/toxicidad , Pruebas de Toxicidad/métodos , Animales , Tipificación del Cuerpo/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Femenino , Edición Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Corazón/embriología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocitos Cardíacos/citología , Cadenas Ligeras de Miosina/genética , Embarazo , Retinoides/farmacología
7.
J Med Chem ; 60(18): 7781-7798, 2017 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-28858485

RESUMEN

Transcription factors are pivotal regulators of gene transcription, and many diseases are associated with the deregulation of transcriptional networks. In the heart, the transcription factors GATA4 and NKX2-5 are required for cardiogenesis. GATA4 and NKX2-5 interact physically, and the activation of GATA4, in cooperation with NKX2-5, is essential for stretch-induced cardiomyocyte hypertrophy. Here, we report the identification of four small molecule families that either inhibit or enhance the GATA4-NKX2-5 transcriptional synergy. A fragment-based screening, reporter gene assay, and pharmacophore search were utilized for the small molecule screening, identification, and optimization. The compounds modulated the hypertrophic agonist-induced cardiac gene expression. The most potent hit compound, N-[4-(diethylamino)phenyl]-5-methyl-3-phenylisoxazole-4-carboxamide (3, IC50 = 3 µM), exhibited no activity on the protein kinases involved in the regulation of GATA4 phosphorylation. The identified and chemically and biologically characterized active compound, and its derivatives may provide a novel class of small molecules for modulating heart regeneration.


Asunto(s)
Factor de Transcripción GATA4/metabolismo , Proteína Homeótica Nkx-2.5/metabolismo , Isoxazoles/química , Isoxazoles/farmacología , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Activación Transcripcional/efectos de los fármacos , Animales , Línea Celular , Factor de Transcripción GATA4/agonistas , Factor de Transcripción GATA4/antagonistas & inhibidores , Proteína Homeótica Nkx-2.5/agonistas , Proteína Homeótica Nkx-2.5/antagonistas & inhibidores , Humanos , Ratones , Modelos Moleculares , Mapas de Interacción de Proteínas/efectos de los fármacos
8.
Biomaterials ; 94: 93-104, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27107168

RESUMEN

Chronic heart failure, predominantly developed after myocardial infarction, is a leading cause of high mortality worldwide. As existing therapies have still limited success, natural and/or synthetic nanomaterials are emerging alternatives for the therapy of heart diseases. Therefore, we aimed to functionalize undecylenic acid thermally hydrocarbonized porous silicon nanoparticles (NPs) with different targeting peptides to improve the NP's accumulation in different cardiac cells (primary cardiomyocytes, non-myocytes, and H9c2 cardiomyoblasts), additionally to investigate the behavior of the heart-targeted NPs in vivo. The toxicity profiles of the NPs evaluated in the three heart-type cells showed low toxicity at concentrations up to 50 µg/mL. Qualitative and quantitative cellular uptake revealed a significant increase in the accumulation of atrial natriuretic peptide (ANP)-modified NPs in primary cardiomyocytes, non-myocytes and H9c2 cells, and in hypoxic primary cardiomyocytes and non-myocytes. Competitive uptake studies in primary cardiomyocytes showed the internalization of ANP-modified NPs takes place via the guanylate cyclase-A receptor. When a myocardial infarction rat model was induced by isoprenaline and the peptide-modified [(111)In]NPs administered intravenously, the targeting peptides, particularly peptide 2, improved the NPs' accumulation in the heart up to 3.0-fold, at 10 min. This study highlights the potential of these peptide-modified nanosystems for future applications in heart diseases.


Asunto(s)
Corazón/fisiología , Nanopartículas/química , Silicio/química , Adsorción , Animales , Factor Natriurético Atrial/metabolismo , Proteínas Sanguíneas/metabolismo , Supervivencia Celular , Coloides , Humanos , Masculino , Miocitos Cardíacos/metabolismo , Nanopartículas/ultraestructura , Péptidos/química , Porosidad , Ratas Wistar , Temperatura , Tomografía Computarizada de Emisión de Fotón Único , Ácidos Undecilénicos/química
9.
Biomaterials ; 35(29): 8394-405, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24985734

RESUMEN

Myocardial infarction (MI), commonly known as a heart attack, is the irreversible necrosis of heart muscle secondary to prolonged ischemia, which is an increasing problem in terms of morbidity, mortality and healthcare costs worldwide. Along with the idea to develop nanocarriers that efficiently deliver therapeutic agents to target the heart, in this study, we aimed to test the in vivo biocompatibility of different sizes of thermally hydrocarbonized porous silicon (THCPSi) microparticles and thermally oxidized porous silicon (TOPSi) micro and nanoparticles in the heart tissue. Despite the absence or low cytotoxicity, both particle types showed good in vivo biocompatibility, with no influence on hematological parameters and no considerable changes in cardiac function before and after MI. The local injection of THCPSi microparticles into the myocardium led to significant higher activation of inflammatory cytokine and fibrosis promoting genes compared to TOPSi micro and nanoparticles; however, both particles showed no significant effect on myocardial fibrosis at one week post-injection. Our results suggest that THCPSi and TOPSi micro and nanoparticles could be applied for cardiac delivery of therapeutic agents in the future, and the PSi biomaterials might serve as a promising platform for the specific treatment of heart diseases.


Asunto(s)
Materiales Biocompatibles/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Miocardio/metabolismo , Silicio/química , Animales , Materiales Biocompatibles/efectos adversos , Células Cultivadas , Portadores de Fármacos/efectos adversos , Fibrosis/inducido químicamente , Fibrosis/genética , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/genética , Masculino , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Porosidad , Ratas , Ratas Sprague-Dawley , Silicio/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...