Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comp Med ; 73(6): 466-473, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38110195

RESUMEN

Mice are widely used as small animal models for influenza infection and immunization studies because of their susceptibility to many strains of influenza, obvious clinical signs of infection, and ease of handling. Analgesia is rarely used in such studies even if nonstudy effects such as fight wounds, tail injuries, or severe dermatitis would otherwise justify it because of concerns that treatment might have confounding effects on primary study parameters such as the course of infection and/or the serological response to infection. However, analgesia for study-related or -unrelated effects may be desirable for animal welfare purposes. Opioids, such as extended-release buprenorphine, are well-characterized analgesics in mice and may have fewer immune-modulatory effects than other drug classes. In this study, BALB/c and DBA/2 mice were inoculated with influenza virus, and treatment groups received either no analgesics or 2 doses of extended-release buprenorphine 72 h apart. Clinical signs, mortality, and influenza-specific antibody responses were comparable in mice that did or did not receive buprenorphine. We therefore conclude that extended-release buprenorphine can be used to alleviate incidental pain during studies of influenza infection without altering the course of infection or the immune response.


Asunto(s)
Buprenorfina , Infecciones por Orthomyxoviridae , Animales , Ratones , Analgésicos , Analgésicos Opioides/uso terapéutico , Buprenorfina/uso terapéutico , Buprenorfina/farmacología , Modelos Animales de Enfermedad , Ratones Endogámicos DBA , Dolor , Infecciones por Orthomyxoviridae/tratamiento farmacológico
2.
Vaccine ; 41(5): 1108-1118, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36610932

RESUMEN

There is a continued need for sarbecovirus vaccines that can be manufactured and distributed in low- and middle-income countries (LMICs). Subunit protein vaccines are manufactured at large scales at low costs, have less stringent temperature requirements for distribution in LMICs, and several candidates have shown protection against SARS-CoV-2. We previously reported an engineered variant of the SARS-CoV-2 Spike protein receptor binding domain antigen (RBD-L452K-F490W; RBD-J) with enhanced manufacturability and immunogenicity compared to the ancestral RBD. Here, we report a second-generation engineered RBD antigen (RBD-J6) with two additional mutations to a hydrophobic cryptic epitope in the RBD core, S383D and L518D, that further improved expression titers and biophysical stability. RBD-J6 retained binding affinity to human convalescent sera and to all tested neutralizing antibodies except antibodies that target the class IV epitope on the RBD core. K18-hACE2 transgenic mice immunized with three doses of a Beta variant of RBD-J6 displayed on a virus-like particle (VLP) generated neutralizing antibodies (nAb) to nine SARS-CoV-2 variants of concern at similar levels as two doses of Comirnaty. The vaccinated mice were also protected from challenge with Alpha or Beta SARS-CoV-2. This engineered antigen could be useful for modular RBD-based subunit vaccines to enhance manufacturability and global access, or for further development of variant-specific or broadly acting booster vaccines.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Animales , Ratones , Epítopos/genética , SARS-CoV-2/genética , COVID-19/prevención & control , Sueroterapia para COVID-19 , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Ratones Transgénicos
3.
Microorganisms ; 10(11)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36363750

RESUMEN

Bovine Respiratory Disease (BRD) is a multifactorial condition affecting cattle worldwide resulting in high rates of morbidity and mortality. The disease can be triggered by Bovine Herpesvirus-1 (BoHV-1) infection, stress, and the subsequent proliferation and lung colonization by commensal bacteria such as Mannheimia haemolytica, ultimately inducing severe pneumonic inflammation. Due to its polymicrobial nature, the study of BRD microbes requires co-infection models. While several past studies have mostly focused on the effects of co-infection on host gene expression, we focused on the relationship between BRD pathogens during co-infection, specifically on M. haemolytica's effect on BoHV-1 replication. This study shows that M. haemolytica negatively impacts BoHV-1 replication in a dose-dependent manner in different in vitro models. The negative effect was observed at very low bacterial doses while increasing the viral dose counteracted this effect. Viral suppression was also dependent on the time at which each microbe was introduced to the cell culture. While acidification of the culture medium did not grossly affect cell viability, it significantly inhibited viral replication. We conclude that M. haemolytica and BoHV-1 interaction is dose and time-sensitive, wherein M. haemolytica proliferation induces significant viral suppression when the viral replication program is not fully established.

4.
iScience ; 25(10): 105038, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36068847

RESUMEN

Severe outcomes from SARS-CoV-2 infection are highly associated with preexisting comorbid conditions like hypertension, diabetes, and obesity. We utilized the diet-induced obesity (DIO) model of metabolic dysfunction in K18-hACE2 transgenic mice to model obesity as a COVID-19 comorbidity. Female DIO, but not male DIO mice challenged with SARS-CoV-2 were observed to have shortened time to morbidity compared to controls. Increased susceptibility to SARS-CoV-2 in female DIO was associated with increased viral RNA burden and interferon production compared to males. Transcriptomic analysis of the lungs from all mouse cohorts revealed sex- and DIO-associated differential gene expression profiles. Male DIO mice after challenge had decreased expression of antibody-related genes compared to controls, suggesting antibody producing cell localization in the lung. Collectively, this study establishes a preclinical comorbidity model of COVID-19 in mice where we observed sex- and diet-specific responses that begin explaining the effects of obesity and metabolic disease on COVID-19 pathology.

5.
Front Immunol ; 13: 948431, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091051

RESUMEN

Emergence of variants of concern (VOC) during the COVID-19 pandemic has contributed to the decreased efficacy of therapeutic monoclonal antibody treatments for severe cases of SARS-CoV-2 infection. In addition, the cost of creating these therapeutic treatments is high, making their implementation in low- to middle-income countries devastated by the pandemic very difficult. Here, we explored the use of polyclonal EpF(ab')2 antibodies generated through the immunization of horses with SARS-CoV-2 WA-1 RBD conjugated to HBsAg nanoparticles as a low-cost therapeutic treatment for severe cases of disease. We determined that the equine EpF(ab')2 bind RBD and neutralize ACE2 receptor binding by virus for all VOC strains tested except Omicron. Despite its relatively quick clearance from peripheral circulation, a 100µg dose of EpF(ab')2 was able to fully protect mice against severe disease phenotypes following intranasal SARS-CoV-2 challenge with Alpha and Beta variants. EpF(ab')2 administration increased survival while subsequently lowering disease scores and viral RNA burden in disease-relevant tissues. No significant improvement in survival outcomes or disease scores was observed in EpF(ab')2-treated mice challenged using the Delta variant at 10µg or 100µg doses. Overall, the data presented here provide a proof of concept for the use of EpF(ab')2 in the prevention of severe SARS-CoV-2 infections and underscore the need for either variant-specific treatments or variant-independent therapeutics for COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , COVID-19/prevención & control , Caballos , Humanos , Inmunización Pasiva , Melfalán , Ratones , Pandemias , SARS-CoV-2/genética , gammaglobulinas
6.
mSphere ; 7(4): e0024322, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35968964

RESUMEN

The ongoing COVID-19 pandemic has contributed largely to the global vaccine disparity. Development of protein subunit vaccines can help alleviate shortages of COVID-19 vaccines delivered to low-income countries. Here, we evaluated the efficacy of a three-dose virus-like particle (VLP) vaccine composed of hepatitis B surface antigen (HBsAg) decorated with the receptor binding domain (RBD) from the Wuhan or Beta SARS-CoV-2 strain adjuvanted with either aluminum hydroxide (alum) or squalene in water emulsion (SWE). RBD HBsAg vaccines were compared to the standard two doses of Pfizer mRNA vaccine. Alum-adjuvanted vaccines were composed of either HBsAg conjugated with Beta RBD alone (ß RBD HBsAg+Al) or a combination of both Beta RBD HBsAg and Wuhan RBD HBsAg (ß/Wu RBD HBsAg+Al). RBD vaccines adjuvanted with SWE were formulated with Beta RBD HBsAg (ß RBD HBsAg+SWE) or without HBsAg (ß RBD+SWE). Both alum-adjuvanted RBD HBsAg vaccines generated functional RBD IgG against multiple SARS-CoV-2 variants of concern (VOC), decreased viral RNA burden, and lowered inflammation in the lung against Alpha or Beta challenge in K18-hACE2 mice. However, only ß/Wu RBD HBsAg+Al was able to afford 100% survival to mice challenged with Alpha or Beta VOC. Furthermore, mice immunized with ß RBD HBsAg+SWE induced cross-reactive neutralizing antibodies against major VOC of SARS-CoV-2, lowered viral RNA burden in the lung and brain, and protected mice from Alpha or Beta challenge similarly to mice immunized with Pfizer mRNA. However, RBD+SWE immunization failed to protect mice from VOC challenge. Our findings demonstrate that RBD HBsAg VLP vaccines provided similar protection profiles to the approved Pfizer mRNA vaccines used worldwide and may offer protection against SARS-CoV-2 VOC. IMPORTANCE Global COVID-19 vaccine distribution to low-income countries has been a major challenge of the pandemic. To address supply chain issues, RBD virus-like particle (VLP) vaccines that are cost-effective and capable of large-scale production were developed and evaluated for efficacy in preclinical mouse studies. We demonstrated that RBD-VLP vaccines protected K18-hACE2 mice against Alpha or Beta challenge similarly to Pfizer mRNA vaccination. Our findings showed that the VLP platform can be utilized to formulate immunogenic and efficacious COVID-19 vaccines.


Asunto(s)
COVID-19 , Vacunas de Partículas Similares a Virus , Compuestos de Alumbre , Animales , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Emulsiones , Antígenos de Superficie de la Hepatitis B/genética , Humanos , Melfalán , Ratones , Ratones Endogámicos BALB C , Pandemias , ARN Mensajero , ARN Viral , SARS-CoV-2 , Escualeno , Vacunas Sintéticas , Agua , gammaglobulinas , Vacunas de ARNm
7.
PLoS One ; 17(8): e0273430, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36037222

RESUMEN

The COVID-19 pandemic has been fueled by SARS-CoV-2 novel variants of concern (VOC) that have increased transmissibility, receptor binding affinity, and other properties that enhance disease. The goal of this study is to characterize unique pathogenesis of the Delta VOC strain in the K18-hACE2-mouse challenge model. Challenge studies suggested that the lethal dose of Delta was higher than Alpha or Beta strains. To characterize the differences in the Delta strain's pathogenesis, a time-course experiment was performed to evaluate the overall host response to Alpha or Delta variant challenge. qRT-PCR analysis of Alpha- or Delta-challenged mice revealed no significant difference between viral RNA burden in the lung, nasal wash or brain. However, histopathological analysis revealed high lung tissue inflammation and cell infiltration following Delta- but not Alpha-challenge at day 6. Additionally, pro-inflammatory cytokines were highest at day 6 in Delta-challenged mice suggesting enhanced pneumonia. Total RNA-sequencing analysis of lungs comparing challenged to no challenge mice revealed that Alpha-challenged mice have more total genes differentially activated. Conversely, Delta-challenged mice have a higher magnitude of differential gene expression. Delta-challenged mice have increased interferon-dependent gene expression and IFN-γ production compared to Alpha. Analysis of TCR clonotypes suggested that Delta challenged mice have increased T-cell infiltration compared to Alpha challenged. Our data suggest that Delta has evolved to engage interferon responses in a manner that may enhance pathogenesis. The in vivo and in silico observations of this study underscore the need to conduct experiments with VOC strains to best model COVID-19 when evaluating therapeutics and vaccines.


Asunto(s)
COVID-19 , Neumonía , Animales , Antivirales , COVID-19/genética , Modelos Animales de Enfermedad , Humanos , Interferones , Melfalán , Ratones , Ratones Transgénicos , Pandemias , SARS-CoV-2 , gammaglobulinas
8.
NPJ Vaccines ; 7(1): 36, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35288576

RESUMEN

SARS-CoV-2 is a viral respiratory pathogen responsible for the current global pandemic and the disease that causes COVID-19. All current WHO approved COVID-19 vaccines are administered through the muscular route. We have developed a prototype two-dose vaccine (BReC-CoV-2) by combining the Receptor Binding Domain (RBD) antigen, via conjugation to Diphtheria toxoid (EcoCRM®). The vaccine is adjuvanted with Bacterial Enzymatic Combinatorial Chemistry (BECC), BECC470. Intranasal (IN) administration of BreC-CoV-2 in K18-hACE2 mice induced a strong systemic and localized immune response in the respiratory tissues which provided protection against the Washington strain of SARS-CoV-2. Protection provided after IN administration of BReC-CoV-2 was associated with decreased viral RNA copies in the lung, robust RBD IgA titers in the lung and nasal wash, and induction of broadly neutralizing antibodies in the serum. We also observed that BReC-CoV-2 vaccination administered using an intramuscular (IM) prime and IN boost protected mice from a lethal challenge dose of the Delta variant of SARS-CoV-2. IN administration of BReC-CoV-2 provided better protection than IM only administration to mice against lethal challenge dose of SARS-CoV-2. These data suggest that the IN route of vaccination induces localized immune responses that can better protect against SARS-CoV-2 than the IM route in the upper respiratory tract.

9.
J Virol ; 96(6): e0218421, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35080423

RESUMEN

SARS-CoV-2 variants of concern (VoC) are impacting responses to the COVID-19 pandemic. Here, we utilized passive immunization using human convalescent plasma (HCP) obtained from a critically ill COVID-19 patient in the early pandemic to study the efficacy of polyclonal antibodies generated to ancestral SARS-CoV-2 against the Alpha, Beta, and Delta VoC in the K18 human angiotensin converting enzyme 2 (hACE2) transgenic mouse model. HCP protected mice from challenge with the original WA-1 SARS-CoV-2 strain; however, only partially protected mice challenged with the Alpha VoC (60% survival) and failed to save Beta challenged mice from succumbing to disease. HCP treatment groups had elevated receptor binding domain (RBD) and nucleocapsid IgG titers in the serum; however, Beta VoC viral RNA burden in the lung and brain was not decreased due to HCP treatment. While mice could be protected from WA-1 or Alpha challenge with a single dose of HCP, six doses of HCP could not decrease mortality of Delta challenged mice. Overall, these data demonstrate that VoC have enhanced immune evasion and this work underscores the need for in vivo models to evaluate future emerging strains. IMPORTANCE Emerging SARS-CoV-2 VoC are posing new problems regarding vaccine and monoclonal antibody efficacy. To better understand immune evasion tactics of the VoC, we utilized passive immunization to study the effect of early-pandemic SARS-CoV-2 HCP against, Alpha, Beta, and Delta VoC. We observed that HCP from a human infected with the original SARS-CoV-2 was unable to control lethality of Alpha, Beta, or Delta VoC in the K18-hACE2 transgenic mouse model of SARS-CoV-2 infection. Our findings demonstrate that passive immunization can be used as a model to evaluate immune evasion of emerging VoC strains.


Asunto(s)
COVID-19/terapia , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/genética , Animales , Anticuerpos Neutralizantes/inmunología , COVID-19/prevención & control , Modelos Animales de Enfermedad , Humanos , Inmunización Pasiva , Melfalán , Ratones , Ratones Transgénicos , SARS-CoV-2/genética , SARS-CoV-2/inmunología , gammaglobulinas , Sueroterapia para COVID-19
10.
medRxiv ; 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34426815

RESUMEN

The SARS-CoV-2 pandemic has affected all types of global communities. Differences in urban and rural environments have led to varying levels of transmission within these subsets of the population. To fully understand the prevalence and impact of SARS-CoV-2 it is critical to survey both types of community. This study establishes the prevalence of SARS-CoV-2 in a rural community: Montgomery, West Virginia. Approximately 10% of participants exhibited serological or PCR-based results indicating exposure to SARS-CoV-2 within 6 months of the sampling date. Quantitative analysis of IgG levels against SARS-CoV-2 receptor binding domain (RBD) was used to stratify individuals based on antibody response to SARS-CoV-2. A significant negative correlation between date of exposure and degree of anti-SARS-CoV-2 RBD IgG (R 2 = 0.9006) was discovered in addition to a correlation between neutralizing anti-SARS-CoV-2 antibodies (R 2 = 0.8880) and days post exposure. Participants were confirmed to have normal immunogenic profiles by determining serum reactivity B. pertussis antigens commonly used in standardized vaccines. No significant associations were determined between anti-SARS-CoV-2 RBD IgG and age or biological sex. Reporting of viral-like illness symptoms was similar in SARS-CoV-2 exposed participants greater than 30 years old (100% reporting symptoms 30-60 years old, 75% reporting symptoms >60 years old) in contrast to participants under 30 years old (25% reporting symptoms). Overall, this axnalysis of a rural population provides important information about the SARS-CoV-2 pandemic in small rural communities. The study also underscores the fact that prior infection with SARS-CoV-2 results in antibody responses that wane over time which highlights the need for vaccine mediated protection in the absence of lasting protection.

11.
bioRxiv ; 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33972945

RESUMEN

SARS-CoV-2 variants of concern (VoCs) are impacting responses to the COVID-19 pandemic. Here we present a comparison of the SARS-CoV-2 USA-WA1/2020 (WA-1) strain with B.1.1.7 and B.1.351 VoCs and identify significant differences in viral propagation in vitro and pathogenicity in vivo using K18-hACE2 transgenic mice. Passive immunization with plasma from an early pandemic SARS-CoV-2 patient resulted in significant differences in the outcome of VoC-infected mice. WA-1-infected mice were protected by plasma, B.1.1.7-infected mice were partially protected, and B.1.351-infected mice were not protected. Serological correlates of disease were different between VoC-infected mice, with B.1.351 triggering significantly altered cytokine profiles than other strains. In this study, we defined infectivity and immune responses triggered by VoCs and observed that early 2020 SARS-CoV-2 human immune plasma was insufficient to protect against challenge with B.1.1.7 and B.1.351 in the mouse model.

12.
mSphere ; 6(1)2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33472985

RESUMEN

The SARS-CoV-2 pandemic is impacting the global population. This study was designed to assess the interplay of antibodies with the cytokine response in SARS-CoV-2 patients. We demonstrate that significant levels of anti-SARS-CoV-2 antibody to receptor binding domain (RBD), nucleocapsid, and spike S1 subunit of SARS-CoV-2 develop over the first 10 to 20 days of infection. The majority of patients produced antibodies against all three antigens (219/255 SARS-CoV-2+ patient specimens, 86%), suggesting a broad response to viral proteins. Antibody levels to SARS-CoV-2 antigens were different based on patient mortality, sex, blood type, and age. Analyses of these findings may help explain variation in immunity between these populations. To better understand the systemic immune response, we analyzed the levels of 20 cytokines by SARS-CoV-2 patients throughout infection. Cytokine analysis of SARS-CoV-2+ patients exhibited increases in proinflammatory markers (interleukin 6 [IL-6], IL-8, IL-18, and gamma interferon [IFN-γ]) and chemotactic markers (IP-10 and eotaxin) relative to healthy individuals. Patients who succumbed to infection produced decreased IL-2, IL-4, IL-12, RANTES, tumor necrosis factor alpha (TNF-α), GRO-α, and MIP-1α relative to patients who survived infection. We also observed that the chemokine CXCL13 was particularly elevated in patients who succumbed to infection. CXCL13 is involved in B cell activation, germinal center development, and antibody maturation, and we observed that CXCL13 levels in blood trended with anti-SARS-CoV-2 antibody levels. Furthermore, patients who succumbed to infection produced high CXCL13 and had a higher ratio of nucleocapsid to RBD antibodies. This study provides insights into SARS-CoV-2 immunity implicating the magnitude and specificity of response in relation to patient outcomes.IMPORTANCE The SARS-CoV-2 pandemic is continuing to impact the global population, and knowledge of the immune response to COVID-19 is still developing. This study assesses the interplay of different parts of the immune system during COVID-19 disease. We demonstrate that COVID-19 patients produce antibodies to three proteins of the COVID-19 virus (SARS-CoV-2) and identify many other immunological proteins that are involved during infection. The data suggest that one of these proteins (CXCL13) may be a novel biomarker for severe COVID-19 that can be readily measured in blood. This information combined with our broad-scale analysis of immune activity during COVID-19 provides new information on the immunological response throughout the course of disease and identifies a novel potential marker for assessing disease severity.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/diagnóstico , Quimiocina CXCL13/sangre , Citocinas/análisis , SARS-CoV-2/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores , COVID-19/inmunología , COVID-19/mortalidad , Citocinas/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , Índice de Severidad de la Enfermedad , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...