Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecol Appl ; 24(4): 750-8, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24988773

RESUMEN

Secondary and managed plantation forests comprise a rapidly increasing portion of the humid tropical forest biome, a region that, in turn, is a major source of nitrous oxide (N2O) emissions to the atmosphere. Previous work has demonstrated reduced N2O emissions in regenerating secondary stands compared to mature forests, yet the importance of species composition in regulating N2O production in young forests remains unclear. We measured N2O fluxes beneath four native tree species planted in replicated, 21-yr-old monodominant stands in the Caribbean lowlands of Costa Rica in comparison with nearby mature forest and abandoned pasture sites at two time points (wetter and drier seasons). We found that species differed eight-fold in their production of N2O, with slower growing, late-successional species (including one legume) promoting high N2O fluxes similar to mature forest, and faster growing, early successional species maintaining low N2O fluxes similar to abandoned pasture. Across all species, N2O flux was positively correlated with soil nitrate concentration in the wetter season and with soil water-filled pore space (WFPS) in the drier season. However, the strongest predictor of N2O fluxes was fine-root growth rate, which was negatively correlated with N2O emissions at both time points. We suggest that tree-specific variation in growth habits creates differences in both N demand and soil water conditions that may exert significant control on N2O fluxes from tropical forests. With the advent of REDD+ and related strategies for fostering climate mitigation via tropical forest regrowth and plantations, we note that species-specific traits as they relate to N2O fluxes may be an important consideration in estimating overall climate benefits.


Asunto(s)
Agricultura , Óxido Nitroso/metabolismo , Árboles/fisiología , Clima Tropical , Biodiversidad , Costa Rica , Raíces de Plantas/crecimiento & desarrollo , Lluvia , Estaciones del Año , Suelo , Árboles/crecimiento & desarrollo , Agua
2.
Ecol Appl ; 20(4): 1087-100, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20597292

RESUMEN

In the moist tropical forest biome, which cycles carbon (C) rapidly and stores huge amounts of C, the impacts of individual species on C balances are not well known. In one of the earliest replicated experimental sites for investigating growth of native tropical trees, we examined traits of tree species in relation to their effects on forest C balances, mechanisms of influence, and consequences for C sequestration. The monodominant stands, established in abandoned pasture in 1988 at La Selva Biological Station, Costa Rica, contained five species in a complete randomized block design. Native species were: Hieronyma alchorneoides, Pentaclethra macroloba, Virola koschnyi, and Vochysia guatemalensis. The exotic species was Pinus patula. By 16 years, the lack of differences among species in some attributes suggested strong abiotic control in this environment, where conditions are very favorable for growth, These attributes included aboveground net primary productivity (ANPP), averaging 11.7 Mg C x ha(-1) x yr(-1) across species, and soil organic C (0-100 cm, 167 Mg C/ha). Other traits differed significantly, however, indicating some degree of biological control. In Vochysia plots, both aboveground biomass of 99 Mg C/ha, and belowground biomass of 20 Mg C/ha were 1.8 times that of Virola (P = 0.02 and 0.03, respectively). Differences among species in overstory biomass were not compensated by understory vegetation. Belowground NPP of 4.6 Mg C x ha(-1) yr(-1) in Hieronyma was 2.4 times that of Pinus (P < 0.01). Partitioning of NPP to belowground components in Hieronyma was more than double that of Pinus (P = 0.03). The canopy turnover rate in Hieronyma was 42% faster than that of Virola (P < 0.01). Carbon sequestration, highest in Vochysia (7.4 Mg C x ha(-1) x yr(-1), P = 0.02), averaged 5.2 Mg C x ha(-1) x yr(-1), close to the annual per capita fossil fuel use in the United States of 5.3 Mg C. Our results indicated that differences in species effects on forest C balances were related primarily to differences in growth rates, partitioning of C among biomass components, tissue turnover rates, and tissue chemistry. Inclusion of those biological attributes may be critical for robust modeling of C cycling across the moist tropical forest biome.


Asunto(s)
Biomasa , Carbono/metabolismo , Árboles/metabolismo , Carbono/análisis , Costa Rica , Hojas de la Planta/crecimiento & desarrollo , Suelo/análisis , Especificidad de la Especie , Árboles/crecimiento & desarrollo , Clima Tropical
3.
Oecologia ; 161(2): 325-30, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19484478

RESUMEN

Prolific fine root growth coupled with small accumulations of dead fine roots indicate rapid rates of fine root production, mortality and decay in young tree plantations in lowland Costa Rica. However, published studies indicate that fine roots decay relatively slowly in tropical forests. To resolve this discrepancy, we used the intact-core technique to quantify first-year decay rates of fine roots in four single-species plantations of native tree species. We tested three hypotheses: first, that fine roots from different tree species would decay at different rates; second, that species having rapid fine root growth rates would also have rapid rates of fine root decay; and third, that differences in fine root decay among species could be explained by fine root chemistry variables previously identified as influencing decay rates. Fine roots in Virola koschnyi plantations decayed very slowly (k = 0.29 +/- 0.15 year(-1)); those of Vochysia guatemalensis decayed seven times faster (k = 2.00 +/- 0.13 year(-1)). Decay rates of the remaining two species, Hieronyma alchorneoides and Pentaclethra macroloba, were 1.36 and 1.28 year(-1), respectively. We found a positive, marginally significant correlation between fine root decay rates and the relative growth rates of live fine roots (R = 0.93, n = 4, P = 0.072). There was a highly significant negative correlation between fine root decay and fine root lignin:N (R = 0.99, P = 0.01), which supports the use of lignin:N as a decay-controlling factor within terrestrial ecosystem models. The decay rates that we observed in this single study location encompassed the entire range of fine root decay rates previously observed in moist tropical forests, and thus suggest great potential for individual tree species to alter belowground organic matter and nutrient dynamics within a biotically rich rainforest environment.


Asunto(s)
Ecosistema , Modelos Biológicos , Raíces de Plantas/crecimiento & desarrollo , Árboles/fisiología , Calcio/análisis , Carbono/análisis , Costa Rica , Lignina/análisis , Nitrógeno/análisis , Raíces de Plantas/química , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA