Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 95(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38376385

RESUMEN

The rheology of air or moisture sensitive liquids, gels, and glasses requires complicated rheometer-in-glovebox laboratory setups. Here, we demonstrate the use of a heavier-than-air cover gas, sulfur hexafluoride, and the design of a cover gas container that can attach to the lower geometry plate of any rheometer to carry out rheology experiments on air-sensitive liquids and soft solids. Rheological measurements of air-reactive ionic liquid trimethylsulfonium bromide-AlCl3, moisture sensitive titanium(IV) propoxide, and glycerin demonstrate the effectiveness of the cover-gas method for loading samples on acquiring correct temperature dependent viscosity data of the sample in the absence of reaction products.

2.
J Am Chem Soc ; 145(48): 26061-26067, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37978954

RESUMEN

On supercooling a liquid, the viscosity rises rapidly until at the glass transition it vitrifies into an amorphous solid accompanied by a steep drop in the heat capacity. Therefore, a pure homogeneous liquid is not expected to display more than one glass transition. Here we show that a family of single-component homogeneous molecular liquids, titanium tetraalkoxides, exhibit two calorimetric glass transitions of comparable magnitude, one of which is the conventional glass transition associated with dynamic arrest of the bulk liquid properties, while the other is associated with the freezing out of intramolecular degrees of freedom. Such intramolecular vitrification is likely to be found in molecules in which low-frequency terahertz intramolecular motion is coupled to the surrounding liquid. These results imply that intramolecular barrier-crossing processes, typically associated with chemical reactivity, do not necessarily follow the Arrhenius law but may freeze out at a finite temperature.

4.
Nat Commun ; 14(1): 215, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639380

RESUMEN

A common feature of glasses is the "boson peak", observed as an excess in the heat capacity over the crystal or as an additional peak in the terahertz vibrational spectrum. The microscopic origins of this peak are not well understood; the emergence of locally ordered structures has been put forward as a possible candidate. Here, we show that depolarised Raman scattering in liquids consisting of highly symmetric molecules can be used to isolate the boson peak, allowing its detailed observation from the liquid into the glass. The boson peak in the vibrational spectrum matches the excess heat capacity. As the boson peak intensifies on cooling, wide-angle x-ray scattering shows the simultaneous appearance of a pre-peak due to molecular clusters consisting of circa 20 molecules. Atomistic molecular dynamics simulations indicate that these are caused by over-coordinated molecules. These findings represent an essential step toward our understanding of the physics of vitrification.

5.
Radiat Oncol ; 16(1): 104, 2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-34118963

RESUMEN

PURPOSE: The recent implementation of MR-Linacs has highlighted theranostic opportunities of contrast agents in both imaging and radiotherapy. There is a lack of data exploring the potential of superparamagnetic iron oxide nanoparticles (SPIONs) as radiosensitisers. Through preclinical 225 kVp exposures, this study aimed to characterise the uptake and radiobiological effects of SPIONs in tumour cell models in vitro and to provide proof-of-principle application in a xenograft tumour model. METHODS: SPIONs were also characterised to determine their hydrodynamic radius using dynamic light scattering and uptake was measured using ICP-MS in 6 cancer cell lines; H460, MiaPaCa2, DU145, MCF7, U87 and HEPG2. The impact of SPIONs on radiobiological response was determined by measuring DNA damage using 53BP1 immunofluorescence and cell survival. Sensitisation Enhancement Ratios (SERs) were compared with the predicted Dose Enhancement Ratios (DEFs) based on physical absorption estimations. In vivo efficacy was demonstrated using a subcutaneous H460 xenograft tumour model in SCID mice by following intra-tumoural injection of SPIONs. RESULTS: The hydrodynamic radius was found to be between 110 and 130 nm, with evidence of being monodisperse in nature. SPIONs significantly increased DNA damage in all cell lines with the exception of U87 cells at a dose of 1 Gy, 1 h post-irradiation. Levels of DNA damage correlated with the cell survival, in which all cell lines except U87 cells showed an increased sensitivity (P < 0.05) in the linear quadratic curve fit for 1 h exposure to 23.5 µg/ml SPIONs. There was also a 30.1% increase in the number of DNA damage foci found for HEPG2 cells at 2 Gy. No strong correlation was found between SPION uptake and DNA damage at any dose, yet the biological consequences of SPIONs on radiosensitisation were found to be much greater, with SERs up to 1.28 ± 0.03, compared with predicted physical dose enhancement levels of 1.0001. In vivo, intra-tumoural injection of SPIONs combined with radiation showed significant tumour growth delay compared to animals treated with radiation or SPIONs alone (P < 0.05). CONCLUSIONS: SPIONs showed radiosensitising effects in 5 out of 6 cancer cell lines. No correlation was found between the cell-specific uptake of SPIONs into the cells and DNA damage levels. The in vivo study found a significant decrease in the tumour growth rate.


Asunto(s)
Rayos gamma , Nanopartículas Magnéticas de Óxido de Hierro/administración & dosificación , Neoplasias/radioterapia , Fármacos Sensibilizantes a Radiaciones/administración & dosificación , Animales , Apoptosis , Proliferación Celular , Humanos , Ratones , Ratones SCID , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
6.
BMJ Open Respir Res ; 8(1)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33827856

RESUMEN

BACKGROUND: The symptoms, radiography, biochemistry and healthcare utilisation of patients with COVID-19 following discharge from hospital have not been well described. METHODS: Retrospective analysis of 401 adult patients attending a clinic following an index hospital admission or emergency department attendance with COVID-19. Regression models were used to assess the association between characteristics and persistent abnormal chest radiographs or breathlessness. RESULTS: 75.1% of patients were symptomatic at a median of 53 days post discharge and 72 days after symptom onset and chest radiographs were abnormal in 47.4%. Symptoms and radiographic abnormalities were similar in PCR-positive and PCR-negative patients. Severity of COVID-19 was significantly associated with persistent radiographic abnormalities and breathlessness. 18.5% of patients had unscheduled healthcare visits in the 30 days post discharge. CONCLUSIONS: Patients with COVID-19 experience persistent symptoms and abnormal blood biomarkers with a gradual resolution of radiological abnormalities over time. These findings can inform patients and clinicians about expected recovery times and plan services for follow-up of patients with COVID-19.


Asunto(s)
Cuidados Posteriores , Biomarcadores/análisis , COVID-19 , Alta del Paciente/normas , Radiografía Torácica , Evaluación de Síntomas , Cuidados Posteriores/métodos , Cuidados Posteriores/organización & administración , COVID-19/sangre , COVID-19/diagnóstico por imagen , COVID-19/epidemiología , COVID-19/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Aceptación de la Atención de Salud/estadística & datos numéricos , Radiografía Torácica/métodos , Radiografía Torácica/estadística & datos numéricos , Recuperación de la Función , Estudios Retrospectivos , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Evaluación de Síntomas/métodos , Evaluación de Síntomas/estadística & datos numéricos , Factores de Tiempo , Reino Unido/epidemiología
7.
Radiat Res ; 194(3): 298-309, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32942305

RESUMEN

Gadolinium is a commonly used contrast agent for magnetic resonance imaging (MRI). The goal of this work was to determine how MRI contrast agents affect radiosensitivity for tumour cells. Using a 225kVp X-ray cabinet source, immunofluorescence and clonogenic assays were performed on six cancer cell lines: lung (H460), pancreas (MiaPaCa2), prostate (DU145), breast (MCF7), brain (U87) and liver (HEPG2). Dotarem® contrast agent, at concentrations of 0.2, 2 and 20 mM, was used to determine its effect on DNA damage and cell survival. Measurements were performed using inductively coupled plasma mass spectrometry (ICP-MS) to determine the amount of gadolinium taken up by each cell line for each concentration. A statistically significant increase in DNA damage was seen for all cell lines at a dose of 1 Gy for concentrations of 2 and 20 mM, at 1 h postirradiation. At 24 h postirradiation, most of the DNA damage had been repaired, with approximately 90% repair for almost all doses of radiation and concentrations of Dotarem. Clonogenic results showed no statistically significant decrease in cell survival for any cell line or concentration. Uptake measurements showed cell line-specific variations in uptake, with MCF7 and HEPG2 cells having a high percentage uptake compared to other cell lines, with 151.4 ± 0.3 × 10-15 g and 194.8 ± 0.4 × 10-15 g per cell, respectively, at 2 mM Dotarem concentration. In this work, a variability in gadolinium uptake was observed between cell lines. A significant increase was seen in initial levels of DNA damage after 1 Gy irradiation for all six cancer cell lines; however, no significant decrease in cell survival was seen with the clonogenic assay. The observation of high levels of repair suggest that while initial levels of DNA damage are increased, this damage is almost entirely repaired within 24 h, and does not affect the ability of cells to survive and produce colonies.


Asunto(s)
Medios de Contraste/farmacología , Daño del ADN , Gadolinio/farmacología , Imagen por Resonancia Magnética , Tolerancia a Radiación/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Humanos
8.
Part Part Syst Charact ; 37(4): 1900411, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34526737

RESUMEN

Materials with a high atomic number (Z) are shown to cause an increase in the level of cell kill by ionizing radiation when introduced into tumor cells. This study uses in vitro experiments to investigate the differences in radiosensitization between two cell lines (MCF-7 and U87) and three commercially available nanoparticles (gold, gadolinium, and iron oxide) irradiated by 6 MV X-rays. To assess cell survival, clonogenic assays are carried out for all variables considered, with a concentration of 0.5 mg mL-1 for each nanoparticle material used. This study demonstrates differences in cell survival between nanoparticles and cell line. U87 shows the greatest enhancement with gadolinium nanoparticles (2.02 ± 0.36), whereas MCF-7 cells have higher enhancement with gold nanoparticles (1.74 ± 0.08). Mass spectrometry, however, shows highest elemental uptake with iron oxide and U87 cells with 4.95 ± 0.82 pg of iron oxide per cell. A complex relationship between cellular elemental uptake is demonstrated, highlighting an inverse correlation with the enhancement, but a positive relation with DNA damage when comparing the same nanoparticle between the two cell lines.

9.
Sci Rep ; 9(1): 10884, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31350422

RESUMEN

Four terbium radioisotopes (149, 152, 155, 161Tb) constitute a potential theranostic quartet for cancer treatment but require any derived radiopharmaceutical to be essentially free of impurities. Terbium-155 prepared by proton irradiation and on-line mass separation at the CERN-ISOLDE and CERN-MEDICIS facilities contains radioactive 139Ce16O and also zinc or gold, depending on the catcher foil used. A method using ion-exchange and extraction chromatography resins in two column separation steps has been developed to isolate 155Tb with a chemical yield of ≥95% and radionuclidic purity ≥99.9%. Conversion of terbium into a form suitable for chelation to targeting molecules in diagnostic nuclear medicine is presented. The resulting 155Tb preparations are suitable for the determination of absolute activity, SPECT phantom imaging studies and pre-clinical trials.

10.
J Photochem Photobiol B ; 197: 111540, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31276926

RESUMEN

Protein aggregation can lead to several incurable amyloidosis diseases. The full aggregation pathway is not fully understood, creating the need for new methods of studying this important biological phenomenon. Lysozyme is an amyloidogenic protein which is often used as a model protein for studying amyloidosis. This work explores the potential of employing Lysozyme encapsulated gold nanoclusters (Ly-AuNCs) to study the protein's aggregation. The fluorescence emission properties of Ly-AuNCs were studied in the presence of increasing concentrations of native lysozyme and as a function of pH, of relevance in macromolecular crowding and inflammation-triggered aggregation. AuNC fluorescence was observed to both redshift and increase in intensity as pH is increased or when native lysozyme is added to a solution of Ly-AuNCs at pH 3. The long (µs) fluorescence lifetime component of AuNC emission was observed to decrease under both conditions. Interestingly it was found via Time-Resolved Emission Spectra (TRES) that both AuNC fluorescence components increase in intensity and redshift with increasing pH while only the long lifetime component of AuNC was observed to change when adding native lysozyme to solution; indicating that the underlying mechanisms for the changes observed are fundamentally different for each case. It is possible that the sensitivity of Ly-AuNCs to native lysozyme concentration could be utilized to study early-stage aggregation.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Muramidasa/química , Animales , Pollos , Concentración de Iones de Hidrógeno , Muramidasa/metabolismo , Agregado de Proteínas/fisiología , Espectrometría de Fluorescencia
11.
Phys Chem Chem Phys ; 21(9): 4907-4911, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30756100

RESUMEN

Lysozyme is one of the most commonly used proteins for encapsulating gold nanoclusters, yielding Ly-AuNC complexes. While possible applications of Ly-AuNCs in environmental, biological and trace metal sensing in solution have been demonstrated, there is currently a poor understanding of the physical characteristics of the Ly-AuNC complex. In this study we have employed fully atomistic molecular dynamics simulations to gain an understanding of the formation of Au clusters within the protein. It was found that in order to form AuNCs in the simulations, an approach of targeted insertion of Au atoms at a critical surface residue was needed. Tyrosine is known to be crucial for the reduction of Au salts experimentally, and our simulations showed that Tyr20 is the key residue for the formation of an AuNC beneath the protein surface in the α-helical domain. It is hoped these observations will aid future improvements and modification of Ly-AuNCs via alterations of the alpha-helix domain or Tyr20.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Simulación de Dinámica Molecular , Muramidasa/metabolismo , Tirosina/metabolismo , Muramidasa/química , Conformación Proteica en Hélice alfa , Dominios Proteicos , Tirosina/química
12.
J Mater Chem B ; 7(7): 1167-1175, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32254785

RESUMEN

Protein misfolding plays a critical role in the manifestation of amyloidosis type diseases. Therefore, understanding protein unfolding and the ability to track protein unfolding in a dynamic manner are of considerable interest. Fluorescence-based techniques are powerful tools for gaining real-time information about the local environmental conditions of a probe on the nanoscale. Fluorescent gold nanoclusters (AuNCs) are a new type of fluorescent probes which are <2 nm in diameter, incredibly robust and offer highly sensitive, wavelength tuneable emission. Their small size minimises intrusion and makes AuNCs ideal for studying protein dynamics. Lysozyme has previously been used to encapsulate AuNCs. The unfolding dynamics of lysozyme under different environmental conditions have been well-studied and being an amyloid type protein makes lysozyme an ideal candidate for encapsulating AuNCs in order to test their sensitivity to protein unfolding. In this study, we tracked the fluorescence characteristics of AuNCs encapsulated in lysozyme while inducing protein unfolding using urea, sodium dodecyl sulphate (SDS) and elevated temperature and compared them to complimentary circular dichroism spectra. It is found that AuNC fluorescence emission is quenched upon induced protein unfolding either due to a decrease in Forster Resonance Energy Transfer (FRET) efficiency between tryptophan and AuNCs or solvent exposure of the AuNC. Fluorescence lifetime measurements confirmed quenching to be collisional via oxygen dissolved in a solution which increases as the AuNC was exposed to the solvent during unfolding. Moreover, the longer decay component τ1 was observed to decrease as the protein unfolded, due to the increased collisional quenching. It is suggested that AuNC sensitivity to solvent exposure might be utilised in the future as a new approach to studying and possibly even detecting amyloidosis type diseases.


Asunto(s)
Colorantes Fluorescentes/química , Oro/química , Nanopartículas del Metal/química , Muramidasa/química , Espectrometría de Fluorescencia , Muramidasa/metabolismo , Oxígeno/química , Tamaño de la Partícula , Desplegamiento Proteico , Urea/química
13.
J Photochem Photobiol B ; 187: 131-135, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30145463

RESUMEN

Protein encapsulated gold nanoclusters have received much attention due to the possibility of using them as a non-toxic fluorescent probe or marker for biomedical applications, however one major disadvantage currently is their low brightness and quantum yield in comparison to currently used fluorescent markers. A method of increasing the fluorescence emission of Human Serum Albumin (HSA) encapsulated gold nanoclusters (AuNCs) via a Polyallylamide hydrochloride (PAH) coating is described. PAH molecules with a molecular weight of ~17,500 Da were found to enhance the fluorescence emission of HSA-AuNCs by 3-fold when the protein/polymer concentration ratio is 2:1 in solution. Interestingly, the fluorescence lifetime of the AuNCs was found to decrease while the native tryptophan (TRP) fluorescence lifetime also decreased during the fluorescence emission intensity enhancement caused by the PAH binding. Coinciding with the decrease in fluorescence lifetime, the zeta potential of the system was observed to be zero during maximum fluorescence intensity enhancement, causing the formation of large aggregates. These results suggest that PAH binds to the HSA-AuNCs acting as a linker; causing aggregation and rigidification, which results in a decrease in separation between native TRP of HSA and AuNCs; improving Förster Resonance Energy Transfer (FRET) and increasing the fluorescence emission intensity. These findings are critical to the development of brighter protein encapsulated AuNCs.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Poliaminas/química , Albúmina Sérica Humana/química , Transferencia Resonante de Energía de Fluorescencia , Humanos
14.
Methods Appl Fluoresc ; 6(3): 035017, 2018 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-29924742

RESUMEN

Fluorescent protein-encapsulated gold nanoclusters (AuNCs) offer a non-toxic means of sensing and imaging biological phenomena on the nanoscale. However, the biofunctionality of proteins encapsulating AuNCs has not been fully elucidated to date. Here we studied the biofunctionality of the second major drug binding site (Sudlow II) of Human Serum Albumin (HSA) encapsulated AuNCs after AuNC synthesis. L-Dopa, a fluorescent drug molecule associated with the clinical treatment of Parkinson's disease, which commonly binds to the Sudlow II site, was used to study the availability of the site before and after AuNC synthesis through changes to its fluorescence characteristics. L-Dopa was observed using its intrinsic fluorescence to readily bind to HSA-AuNCs complexes. Interestingly, the fluorescence emission intensity of AuNCs linearly increased with L-Dopa concentration while exciting the AuNC directly at 470 nm, Using a 400 nM HSA-AuNC solution, L-Dopa was rapidly detected at a limit of 300 pM, indicating that HSA-AuNCs fluorescence is extremely sensitive to molecular binding at the Sudlow II binding site. Future research may be able to utilize this sensitivity to improve the fluorescence characteristics of AuNCs within HSA-AuNCs for imaging and sensing including drug binding studies.


Asunto(s)
Oro/química , Levodopa/farmacología , Nanopartículas del Metal/química , Albúmina Sérica Humana/genética , Espectrometría de Fluorescencia/métodos , Humanos , Albúmina Sérica Humana/metabolismo
15.
Appl Radiat Isot ; 134: 351-357, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28899615

RESUMEN

Decommissioning of nuclear facilities incurs high costs regarding the accurate characterisation and correct disposal of the decommissioned materials. Therefore, there is a need for the implementation of new and traceable measurement technologies to select the appropriate release or disposal route of radioactive wastes. This paper addresses some of the innovative outcomes of the project "Metrology for Decommissioning Nuclear Facilities" related to mapping of contamination inside nuclear facilities, waste clearance measurement, Raman distributed temperature sensing for long term repository integrity monitoring and validation of radiochemical procedures.

16.
Anal Bioanal Chem ; 410(3): 1029-1037, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29030672

RESUMEN

Long-lived high abundance radionuclides are of increasing interest with regard to decommissioning of nuclear sites and longer term nuclear waste storage and disposal. In many cases, no routine technique is available for their measurement in nuclear waste and low-level (ng kg-1) environmental samples. Recent advances in ICP-MS technology offer attractive features for the selective and sensitive determination of a wide range of long-lived radionuclides. In this work, inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS)-based methodology, suitable for accurate routine determinations of 93Zr at very low (ng kg-1) levels in the presence of high levels (µg kg-1) of the isobaric interferents 93Nb and 93Mo (often present in nuclear waste samples), is reported for the first time. Additionally, a novel and systematic strategy for method development based on the use of non-radioactive isotopes is proposed. It relies on gas-phase chemical reactions for different molecular ion formation to achieve isobaric interference removal. Using cell gas mixtures of NH3/He/H2 or H2/O2, and suitable mass shifts, the signal from the 93Nb and 93Mo isobaric interferences on 93Zr were suppressed by up to 5 orders of magnitude. The achieved limit of detection for 93Zr was 1.3 × 10-5 Bq g-1 (equivalent to 0.14 ng kg-1). The sample analysis time is 2 min, which represents a significant improvement in terms of sample throughput, compared to liquid scintillation counting methods. The method described here can be used for routine measurements of 93Zr at environmentally relevant levels. It can also be combined with radiometric techniques for use towards the standardisation of 93Zr measurements. Graphical abstract Interference-free determination of 93Zr in the presence of high concentrations of isobaric 93Mo and 93Nb by ICP-MS/MS.

17.
J Neurooncol ; 131(2): 233-244, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27770278

RESUMEN

Extracellular vesicles (EVs) play key roles in glioblastoma (GBM) biology and represent novel sources of biomarkers that are detectable in the peripheral circulation. Despite this notionally non-invasive approach to assess GBM tumours in situ, a comprehensive GBM EV protein signature has not been described. Here, EVs secreted by six GBM cell lines were isolated and analysed by quantitative high-resolution mass spectrometry. Overall, 844 proteins were identified in the GBM EV proteome, of which 145 proteins were common to EVs secreted by all cell lines examined; included in the curated EV compendium (Vesiclepedia_559; http://microvesicles.org ). Levels of 14 EV proteins significantly correlated with cell invasion (invadopodia production; r2 > 0.5, p < 0.05), including several proteins that interact with molecules responsible for regulating invadopodia formation. Invadopodia, actin-rich membrane protrusions with proteolytic activity, are associated with more aggressive disease and are sites of EV release. Gene levels corresponding to invasion-related EV proteins showed that five genes (annexin A1, actin-related protein 3, integrin-ß1, insulin-like growth factor 2 receptor and programmed cell death 6-interacting protein) were significantly higher in GBM tumours compared to normal brain in silico, with common functions relating to actin polymerisation and endosomal sorting. We also show that Cavitron Ultrasonic Surgical Aspirator (CUSA) washings are a novel source of brain tumour-derived EVs, demonstrated by particle tracking analysis, TEM and proteome profiling. Quantitative proteomics corroborated the high levels of proposed invasion-related proteins in EVs enriched from a GBM compared to low-grade astrocytoma tumour. Large-scale clinical follow-up of putative biomarkers, particularly the proposed survival marker annexin A1, is warranted.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/metabolismo , Vesículas Extracelulares/metabolismo , Glioblastoma/metabolismo , Proteoma/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Vesículas Extracelulares/patología , Glioblastoma/patología , Humanos , Invasividad Neoplásica , Proteómica
18.
Anal Chem ; 86(23): 11890-6, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25374264

RESUMEN

Advances in the sensitivities achievable by sector field inductively coupled plasma mass spectrometry (ICP-SFMS) offer the prospect of low-level measurement of shorter and longer lived radionuclides, thus expanding options for environmental and radioactively contaminated land assessment. In ICP-SFMS, the critical requirement for accurate detection is the effective chemical separation of isobaric and polyatomic interferences prior to sample introduction. As instrumental detection limit capability improves, accurate radionuclide determination requires highly effective separation materials that combine high analyte selectivity with subsequent quantitative analyte recovery compatible with ICP-SFMS detection. Two radioactive isotopes measurable by ICP-SFMS are the high yield fission products (135)Cs and (137)Cs that have entered the environment as a result of anthropogenic nuclear activities. ICP-SFMS enables reliable measurement of (135)Cs/(137)Cs ratios, which can be used as a forensic tool in determining the source of nuclear contamination. The critical requirement for accurate detection is the effective removal of isobaric interferences from (135)Ba and (137)Ba prior to measurement. A number of exchange materials can effectively extract Cs; however, non-quantitative elution of Cs makes subsequent ICP-SFMS quantification challenging. A novel extraction chromatographic resin has been developed by dissolving calix[4]arene-bis(tert-octylbenzo-crown-6) (BOBCalixC6) in octan-1-ol and loading onto an Amberchrom CG-71 prefilter resin material. Preparation of the material takes less than 1 h and, at an optimal concentration of 3 M HNO3, shows high selectivity toward Cs, which is effectively eluted in 0.05 M HNO3. The procedure developed shows high Cs selectivity and Ba decontamination from digests of complex matrixes including a saltmarsh sediment contaminated by aqueous discharges from a nuclear fuel reprocessing facility. Repeated tests show the resin can be reused up to four times. For low-level ICP-SFMS quantification, more complex sample matrixes benefit from a cation resin cleanup stage prior to using BOBCalixC6 that serves to enhance Ba decontamination and Cs recovery.

19.
Anal Chem ; 86(17): 8719-26, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25109496

RESUMEN

Recent advances in sector field inductively coupled plasma mass spectrometry (ICP-SFMS) have led to significant sensitivity enhancements that expand the range of radionuclides measurable by ICP-MS. The increasing capability and performance of modern ICP-MS now allows analysis of medium-lived radionuclides previously undertaken using radiometric methods. A new generation ICP-SFMS was configured to achieve sensitivities up to 80,000 counts per second for a 1 ng/L (133)Cs solution, providing a detection limit of 1 pg/L. To extend this approach to environmental samples it has been necessary to develop an effective chemical separation scheme using ultrapure reagents. A procedure incorporating digestion, chemical separation and quantification by ICP-SFMS is presented for detection of the significant fission product radionuclides of cesium ((135)Cs and (137)Cs) at concentrations found in environmental and low level nuclear waste samples. This in turn enables measurement of the (135)Cs/(137)Cs ratio, which varies with the source of nuclear contamination, and can therefore provide a powerful dating and forensic tool compared to radiometric detection of (137)Cs alone. A detection limit in sediment samples of 0.05 ng/kg has been achieved for (135)Cs and (137)Cs, corresponding to 2.0 × 10(-3) and 160 mBq/kg, respectively. The critical issue is ensuring removal of barium to eliminate isobaric interferences arising from (135)Ba and (137)Ba. The ability to reliably measure (135)Cs/(137)Cs using a high specification laboratory ICP-SFMS now enables characterization of waste materials destined for nuclear waste repositories as well as extending options in environmental geochemical and nuclear forensics studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...