Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc (Bayl Univ Med Cent) ; 36(6): 687-691, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37829233

RESUMEN

Background: Prior studies have shown that programmed intermittent epidural bolus (PIEB) techniques, with or without patient-controlled epidural analgesia (PCEA) boluses, provide better pain relief, reduced motor block, and better patient satisfaction compared to continuous epidural infusion (CEI) techniques. We hypothesized that patients who had labor epidural analgesia (LEA) maintained with PIEB and PCEA would be less likely to receive a physician-administered rescue analgesia bolus compared to patients who had CEI and PCEA. Methods: We searched our electronic medical record for patients who had CEI and PCEA from August 1, 2021 to December 31, 2021 and for patients who had PIEB and PCEA from August 2, 2022 to December 31, 2022. Results: A total of 792 and 665 patients had maintenance of LEA with CEI/PCEA and PIEB/PCEA, respectively. A multivariate logistic regression was performed and, after adjusting for variables of interest, patients who had PIEB and PCEA were less likely to receive one or more physician-administered rescue analgesia boluses (odds ratio 0.504; 95% confidence interval 0.392, 0.649; P < 0.001) compared to patients who had CEI and PCEA. Conclusion: PIEB/PCEA was associated with fewer physician-administered boluses of rescue analgesia compared to CEI/PCEA when used for LEA.

2.
EMBO J ; 41(13): e110031, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35535466

RESUMEN

Autophagy is a cellular degradative pathway that plays diverse roles in maintaining cellular homeostasis. Cellular stress caused by starvation, organelle damage, or proteotoxic aggregates can increase autophagy, which uses the degradative capacity of lysosomal enzymes to mitigate intracellular stresses. Early studies have shown a role for autophagy in the suppression of tumorigenesis. However, work in genetically engineered mouse models and in vitro cell studies have now shown that autophagy can be either cancer-promoting or inhibiting. Here, we summarize the effects of autophagy on cancer initiation, progression, immune infiltration, and metabolism. We also discuss the efforts to pharmacologically target autophagy in the clinic and highlight future areas for exploration.


Asunto(s)
Autofagia , Neoplasias , Animales , Carcinogénesis , Transformación Celular Neoplásica , Homeostasis , Ratones
3.
Cell Death Differ ; 29(3): 585-599, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34588632

RESUMEN

Mutations in susceptibility alleles correlate with gut-inflammatory diseases, such as Crohn's disease; however, this does not often impact the disease progression indicating the existence of compensatory genes. We show that a reduction in Foxo3a expression in IL-10-deficient mice results in a spontaneous and aggressive Crohn's- like disease with 100% penetrance, which is rescued by deletion of myeloid cells, T cells and inhibition of mTORC1. In Foxo3a-/- IL-10-/- mice, there is poor cell death of myeloid cells in the gut, leading to increased accumulation of myeloid and T cells in the gut. Myeloid cells express high levels of inflammatory cytokines, and regulatory T cells are dysfunctional despite increased abundance. Foxo3a signaling represses the transcription of glutaminase (GLS/GLS2) to prevent over-consumption of glutamine by activated T cells and its conversion to glutamate that contributes to the TCA cycle and mTORC1 activation. Finally, we show that Foxo3a restricts the abundance of colitogenic microbiota in IL-10-deficient mice. Thus, by suppressing glutaminolysis in activated T cells Foxo3a mediates a critical checkpoint that prevents the development of fulminant gut inflammatory disease.


Asunto(s)
Colitis , Proteína Forkhead Box O3/metabolismo , Interleucina-10 , Animales , Colitis/genética , Colitis/prevención & control , Inflamación , Interleucina-10/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Linfocitos T
4.
Trends Biochem Sci ; 46(8): 687-700, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33593593

RESUMEN

Autophagy is the primary catabolic program of the cell that promotes survival in response to metabolic stress. It is tightly regulated by a suite of kinases responsive to nutrient status, including mammalian target of rapamycin complex 1 (mTORC1), AMP-activated protein kinase (AMPK), protein kinase C-α (PKCα), MAPK-activated protein kinases 2/3 (MAPKAPK2/3), Rho kinase 1 (ROCK1), c-Jun N-terminal kinase 1 (JNK), and Casein kinase 2 (CSNK2). Here, we highlight recently uncovered mechanisms linking amino acid, glucose, and oxygen levels to autophagy regulation through mTORC1 and AMPK. In addition, we describe new pathways governing the autophagic machinery, including the Unc-51-like (ULK1), vacuolar protein sorting 34 (VPS34), and autophagy related 16 like 1 (ATG16L1) enzyme complexes. Novel downstream targets of ULK1 protein kinase are also discussed, such as the ATG16L1 subunit of the microtubule-associated protein 1 light chain 3 (LC3)-lipidating enzyme and the ATG14 subunit of the VPS34 complex. Collectively, we describe the complexities of the autophagy pathway and its role in maintaining cellular nutrient homeostasis during times of starvation.


Asunto(s)
Autofagia , Serina-Treonina Quinasas TOR , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Nutrientes , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
5.
Nat Methods ; 17(2): 232-239, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31768061

RESUMEN

Autophagy is a degradative program that maintains cellular homeostasis. Autophagy defects have been described in numerous diseases. However, analysis of autophagy rates can be challenging, particularly in rare cell populations or in vivo, due to limitations in currently available tools for measuring autophagy induction. Here, we describe a method to monitor autophagy by measuring phosphorylation of the protein ATG16L1. We developed and characterized a monoclonal antibody that can detect phospho-ATG16L1 endogenously in mammalian cells. Importantly, phospho-ATG16L1 is only present on newly forming autophagosomes. Therefore, its levels are not affected by prolonged stress or late-stage autophagy blocks, which can confound autophagy analysis. Moreover, we show that ATG16L1 phosphorylation is a conserved signaling pathway activated by numerous autophagy-inducing stressors. The described antibody is suitable for western blot, immunofluorescence and immunohistochemistry, and measured phospho-ATG16L1 levels directly correspond to autophagy rates. Taken together, this phospho-antibody represents an exciting tool to study autophagy induction.


Asunto(s)
Anticuerpos/inmunología , Autofagia , Animales , Proteínas Portadoras/metabolismo , Humanos , Fosforilación
6.
EMBO Rep ; 20(7): e46885, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31267703

RESUMEN

Autophagy is a highly regulated catabolic pathway that is potently induced by stressors including starvation and infection. An essential component of the autophagy pathway is an ATG16L1-containing E3-like enzyme, which is responsible for lipidating LC3B and driving autophagosome formation. ATG16L1 polymorphisms have been linked to the development of Crohn's disease (CD), and phosphorylation of CD-associated ATG16L1 T300A (caATG16L1) has been hypothesized to contribute to cleavage and autophagy dysfunction. Here we show that ULK1 kinase directly phosphorylates ATG16L1 in response to infection and starvation. Phosphorylated ATG16L1 localizes to the site of internalized bacteria and stable cell lines harbouring a phospho-dead mutant of ATG16L1 have impaired xenophagy, indicating a role for ATG16L1 phosphorylation in the promotion of anti-bacterial autophagy. In contrast to wild-type ATG16L1, ULK1-mediated phosphorylation of caATG16L1 drives its destabilization in response to stress. In summary, our results show that ATG16L1 is a novel target of ULK1 kinase and that ULK1 signalling to ATG16L1 is a double-edged sword, enhancing the function of the wild-type ATG16L1, but promoting degradation of caATG16L1.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Enfermedad de Crohn/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macroautofagia , Mutación , Animales , Proteínas Relacionadas con la Autofagia/genética , Células HCT116 , Células HEK293 , Humanos , Ratones , Fosforilación , Estabilidad Proteica , Estrés Fisiológico
7.
Autophagy ; 15(8): 1489-1491, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31107135

RESUMEN

Macroautophagy/autophagy is a conserved degradative pathway that host cells use to deal with invading pathogens. Despite significant overlap with starvation-induced autophagy, the early signaling that potentiates anti-bacterial autophagy is still unclear. Here we report AMPK, an upstream kinase regulating starvation-mediated autophagy induction, is activated in response to bacterial infection. AMPK inhibits MTORC1, an autophagy repressor, and activates autophagic ULK1 and PIK3C3/VPS34 complexes. Although AMPK-mediated inhibition of MTORC1 is not accompanied by the induction of bulk autophagy, AMPK regulation is critical for selectively targeting the bacteria for degradation. Moreover, AMPK signaling is triggered by the detection of bacteria-derived outer membrane vesicles and does not require bacterial invasion. Together, these data characterize and highlight the significance of AMPK signaling in priming the autophagic response to bacterial infection. Abbreviations: AMPK: AMP-activated protein kinase; MTORC1: MTOR complex 1; ULK1: Unc-51 like kinase 1; PIK3C3/VPS34: Phosphatidylinositol 3-kinase catalytic subunit type 3.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Autofagia , Homólogo de la Proteína 1 Relacionada con la Autofagia , Membrana Externa Bacteriana , Fosfatidilinositol 3-Quinasas Clase III
8.
Cell Rep ; 26(8): 2150-2165.e5, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30784596

RESUMEN

The autophagy pathway is an essential facet of the innate immune response, capable of rapidly targeting intracellular bacteria. However, the initial signaling regulating autophagy induction in response to pathogens remains largely unclear. Here, we report that AMPK, an upstream activator of the autophagy pathway, is stimulated upon detection of pathogenic bacteria, before bacterial invasion. Bacterial recognition occurs through the detection of outer membrane vesicles. We found that AMPK signaling relieves mTORC1-mediated repression of the autophagy pathway in response to infection, positioning the cell for a rapid induction of autophagy. Moreover, activation of AMPK and inhibition of mTORC1 in response to bacteria is not accompanied by an induction of bulk autophagy. However, AMPK signaling is required for the selective targeting of bacteria-containing vesicles by the autophagy pathway through the activation of pro-autophagic kinase complexes. These results demonstrate a key role for AMPK signaling in coordinating the rapid autophagic response to bacteria.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Membrana Externa Bacteriana/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Macroautofagia , Proteínas Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Células Cultivadas , Células HCT116 , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Células MCF-7 , Macrófagos/metabolismo , Macrófagos/microbiología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos NOD , Salmonella/patogenicidad
9.
Sci Signal ; 10(510)2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29259100

RESUMEN

Huntington's disease (HD) is a neurodegenerative disease caused by an expansion in the huntingtin protein (also called Htt) that induces neuronal cell death with age. We found that the treatment of 12-month-old symptomatic heterozygous and homozygous zQ175 huntingtin knockin mice for 12 weeks with CTEP, a negative allosteric modulator of metabotropic glutamate receptor 5 (mGluR5), reduced the size and number of huntingtin aggregates, attenuated caspase-3 activity, and reduced both neuronal apoptosis and neuronal loss in brain tissue. Both motor and cognitive impairments were improved in CTEP-treated zQ175 mice. The reduction in huntingtin protein aggregate burden by CTEP correlated with the activation of an autophagy pathway mediated by the kinase GSK3ß, the transcription factor ZBTB16, and the autophagy factor ATG14. Inhibition of mGluR5 with CTEP also reduced the inhibitory phosphorylation of the autophagosome biogenesis-related kinase ULK1, increased the phosphorylation of the autophagy factor ATG13, and increased the abundance of the autophagy-related protein Beclin1 in homozygous zQ175 mice. The findings suggest that mGluR5 antagonism may activate autophagy through convergent mechanisms to promote the clearance of mutant huntingtin aggregates and might be therapeutic in HD patients.


Asunto(s)
Autofagia/efectos de los fármacos , Proteína Huntingtina/genética , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/genética , Imidazoles/uso terapéutico , Piridinas/uso terapéutico , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Técnicas de Sustitución del Gen , Humanos , Proteína Huntingtina/metabolismo , Imidazoles/farmacología , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Neuronas/efectos de los fármacos , Piridinas/farmacología
10.
Genes Dev ; 29(22): 2362-76, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26588989

RESUMEN

The mechanistic target of rapamycin (mTOR) is a central cell growth controller and forms two distinct complexes: mTORC1 and mTORC2. mTORC1 integrates a wide range of upstream signals, both positive and negative, to regulate cell growth. Although mTORC1 activation by positive signals, such as growth factors and nutrients, has been extensively investigated, the mechanism of mTORC1 regulation by stress signals is less understood. In this study, we identified the Nemo-like kinase (NLK) as an mTORC1 regulator in mediating the osmotic and oxidative stress signals. NLK inhibits mTORC1 lysosomal localization and thereby suppresses mTORC1 activation. Mechanistically, NLK phosphorylates Raptor on S863 to disrupt its interaction with the Rag GTPase, which is important for mTORC1 lysosomal recruitment. Cells with Nlk deletion or knock-in of the Raptor S863 phosphorylation mutants are defective in the rapid mTORC1 inhibition upon osmotic stress. Our study reveals a function of NLK in stress-induced mTORC1 modulation and the underlying biochemical mechanism of NLK in mTORC1 inhibition in stress response.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Complejos Multiproteicos/metabolismo , Presión Osmótica/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Activación Enzimática , Eliminación de Gen , Técnicas de Sustitución del Gen , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas Quinasas Activadas por Mitógenos/genética , Fosforilación , Proteína Reguladora Asociada a mTOR
11.
Nat Commun ; 6: 8283, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26387534

RESUMEN

Defective hepatic insulin receptor (IR) signalling is a pathogenic manifestation of metabolic disorders including obesity and diabetes. The endo/lysosomal trafficking system may coordinate insulin action and nutrient homeostasis by endocytosis of IR and the autophagic control of intracellular nutrient levels. Here we show that class III PI3K--a master regulator of endocytosis, endosomal sorting and autophagy--provides negative feedback on hepatic insulin signalling. The ultraviolet radiation resistance-associated gene protein (UVRAG)-associated class III PI3K complex interacts with IR and is stimulated by insulin treatment. Acute and chronic depletion of hepatic Vps15, the regulatory subunit of class III PI3K, increases insulin sensitivity and Akt signalling, an effect that requires functional IR. This is reflected by FoxO1-dependent transcriptional defects and blunted gluconeogenesis in Vps15 mutant cells. On depletion of Vps15, the metabolic syndrome in genetic and diet-induced models of insulin resistance and diabetes is alleviated. Thus, feedback regulation of IR trafficking and function by class III PI3K may be a therapeutic target in metabolic conditions of insulin resistance.


Asunto(s)
Glucosa/metabolismo , Insulina/metabolismo , Hígado/metabolismo , Proteína de Clasificación Vacuolar VPS15/metabolismo , Animales , Diabetes Mellitus/metabolismo , Retroalimentación Fisiológica , Homeostasis , Humanos , Resistencia a la Insulina , Hígado/enzimología , Masculino , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína de Clasificación Vacuolar VPS15/genética
12.
Science ; 347(6218): 194-8, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25567907

RESUMEN

The mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) integrates environmental and intracellular signals to regulate cell growth. Amino acids stimulate mTORC1 activation at the lysosome in a manner thought to be dependent on the Rag small guanosine triphosphatases (GTPases), the Ragulator complex, and the vacuolar H(+)-adenosine triphosphatase (v-ATPase). We report that leucine and glutamine stimulate mTORC1 by Rag GTPase-dependent and -independent mechanisms, respectively. Glutamine promoted mTORC1 translocation to the lysosome in RagA and RagB knockout cells and required the v-ATPase but not the Ragulator. Furthermore, we identified the adenosine diphosphate ribosylation factor-1 GTPase to be required for mTORC1 activation and lysosomal localization by glutamine. Our results uncover a signaling cascade to mTORC1 activation independent of the Rag GTPases and suggest that mTORC1 is differentially regulated by specific amino acids.


Asunto(s)
Glutamina/metabolismo , Leucina/metabolismo , Lisosomas/enzimología , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Factor 1 de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Activación Enzimática , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Proteínas de Unión al GTP Monoméricas/genética , Transporte de Proteínas , Proteína Reguladora Asociada a mTOR
13.
Nat Commun ; 5: 4241, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24980141

RESUMEN

The Rag family proteins are Ras-like small GTPases that have a critical role in amino-acid-stimulated mTORC1 activation by recruiting mTORC1 to lysosome. Despite progress in the mechanistic understanding of Rag GTPases in mTORC1 activation, little is known about the physiological function of Rag GTPases in vivo. Here we show that loss of RagA and RagB (RagA/B) in cardiomyocytes results in hypertrophic cardiomyopathy and phenocopies lysosomal storage diseases, although mTORC1 activity is not substantially impaired in vivo. We demonstrate that despite upregulation of lysosomal protein expression by constitutive activation of the transcription factor EB (TFEB) in RagA/B knockout mouse embryonic fibroblasts, lysosomal acidification is compromised owing to decreased v-ATPase level in the lysosome fraction. Our study uncovers RagA/B GTPases as key regulators of lysosomal function and cardiac protection.


Asunto(s)
Cardiomiopatía Hipertrófica/enzimología , Lisosomas/enzimología , Proteínas de Unión al GTP Monoméricas/metabolismo , Animales , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/prevención & control , Femenino , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Unión al GTP Monoméricas/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Miocitos Cardíacos/enzimología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
14.
Cell Res ; 24(1): 42-57, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24343578

RESUMEN

The ability of cells to respond to changes in nutrient availability is essential for the maintenance of metabolic homeostasis and viability. One of the key cellular responses to nutrient withdrawal is the upregulation of autophagy. Recently, there has been a rapid expansion in our knowledge of the molecular mechanisms involved in the regulation of mammalian autophagy induction in response to depletion of key nutrients. Intracellular amino acids, ATP, and oxygen levels are intimately tied to the cellular balance of anabolic and catabolic processes. Signaling from key nutrient-sensitive kinases mTORC1 and AMP-activated protein kinase (AMPK) is essential for the nutrient sensing of the autophagy pathway. Recent advances have shown that the nutrient status of the cell is largely passed on to the autophagic machinery through the coordinated regulation of the ULK and VPS34 kinase complexes. Identification of extensive crosstalk and feedback loops converging on the regulation of ULK and VPS34 can be attributed to the importance of these kinases in autophagy induction and maintaining cellular homeostasis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/fisiología , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Homeostasis/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina , Transducción de Señal
15.
Autophagy ; 9(12): 1983-95, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24013218

RESUMEN

Autophagy is a cellular defense response to stress conditions, such as nutrient starvation. The type III phosphatidylinositol (PtdIns) 3-kinase, whose catalytic subunit is PIK3C3/VPS34, plays a critical role in intracellular membrane trafficking and autophagy induction. PIK3C3 forms multiple complexes and the ATG14-containing PIK3C3 is specifically involved in autophagy induction. Mechanistic target of rapamycin (MTOR) complex 1, MTORC1, is a key cellular nutrient sensor and integrator to stimulate anabolism and inhibit catabolism. Inactivation of TORC1 by nutrient starvation plays a critical role in autophagy induction. In this report we demonstrated that MTORC1 inactivation is critical for the activation of the autophagy-specific (ATG14-containing) PIK3C3 kinase, whereas it has no effect on ATG14-free PIK3C3 complexes. MTORC1 inhibits the PtdIns 3-kinase activity of ATG14-containing PIK3C3 by phosphorylating ATG14, which is required for PIK3C3 inhibition by MTORC1 both in vitro and in vivo. Our data suggest a mechanistic link between amino acid starvation and autophagy induction via the direct activation of the autophagy-specific PIK3C3 kinase.


Asunto(s)
Autofagia , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Hambre/fisiología , Estrés Fisiológico/fisiología , Serina-Treonina Quinasas TOR/fisiología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Aminoácidos/deficiencia , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Relacionadas con la Autofagia , Beclina-1 , Células Cultivadas , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Complejos Multiproteicos/metabolismo , Fagosomas/metabolismo
16.
EMBO Mol Med ; 5(6): 870-90, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23630012

RESUMEN

The complex of Vacuolar Protein Sorting 34 and 15 (Vps34 and Vps15) has Class III phosphatidylinositol 3-kinase activity and putative roles in nutrient sensing, mammalian Target Of Rapamycin (mTOR) activation by amino acids, cell growth, vesicular trafficking and autophagy. Contrary to expectations, here we show that Vps15-deficient mouse tissues are competent for LC3-positive autophagosome formation and maintain mTOR activation. However, an impaired lysosomal function in mutant cells is traced by accumulation of adaptor protein p62, LC3 and Lamp2 positive vesicles, which can be reverted to normal levels after ectopic overexpression of Vps15. Mice lacking Vps15 in skeletal muscles, develop a severe myopathy. Distinct from the autophagy deficient Atg7(-/-) mutants, pathognomonic morphological hallmarks of autophagic vacuolar myopathy (AVM) are observed in Vps15(-/-) mutants, including elevated creatine kinase plasma levels, accumulation of autophagosomes, glycogen and sarcolemmal features within the fibres. Importantly, Vps34/Vps15 overexpression in myoblasts of Danon AVM disease patients alleviates the glycogen accumulation. Thus, the activity of the Vps34/Vps15 complex is critical in disease conditions such as AVMs, and possibly a variety of other lysosomal storage diseases.


Asunto(s)
Autofagia , Músculo Esquelético/metabolismo , Proteína de Clasificación Vacuolar VPS15/metabolismo , Animales , Proteína 7 Relacionada con la Autofagia , Línea Celular , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Humanos , Enfermedades por Almacenamiento Lisosomal/metabolismo , Enfermedades por Almacenamiento Lisosomal/patología , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Músculo Esquelético/fisiopatología , Músculo Esquelético/ultraestructura , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factor de Transcripción TFIIH , Factores de Transcripción/metabolismo , Proteína de Clasificación Vacuolar VPS15/genética
17.
Nat Cell Biol ; 15(7): 741-50, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23685627

RESUMEN

Autophagy is the primary cellular catabolic program activated in response to nutrient starvation. Initiation of autophagy, particularly by amino-acid withdrawal, requires the ULK kinases. Despite its pivotal role in autophagy initiation, little is known about the mechanisms by which ULK promotes autophagy. Here we describe a molecular mechanism linking ULK to the pro-autophagic lipid kinase VPS34. Following amino-acid starvation or mTOR inhibition, the activated ULK1 phosphorylates Beclin-1 on Ser 14, thereby enhancing the activity of the ATG14L-containing VPS34 complexes. The Beclin-1 Ser 14 phosphorylation by ULK is required for full autophagic induction in mammals and this requirement is conserved in Caenorhabditis elegans. Our study reveals a molecular link from ULK1 to activation of the autophagy-specific VPS34 complex and autophagy induction.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Aminoácidos/deficiencia , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Beclina-1 , Caenorhabditis elegans , Células Cultivadas , Embrión de Mamíferos/citología , Activación Enzimática , Fibroblastos/citología , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Riñón/citología , Riñón/metabolismo , Ratones , Ratones Noqueados , Fosforilación , Serina/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Inanición , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Transporte Vesicular/metabolismo
18.
Nat Rev Mol Cell Biol ; 14(3): 133-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23361334

RESUMEN

Mammalian target of rapamycin (mTOR) is a conserved Ser/Thr kinase that is part of mTOR complex 1 (mTORC1), a master regulator that couples amino acid availability to cell growth and autophagy. Multiple cues modulate mTORC1 activity, such as growth factors, stress, energy status and amino acids. Although amino acids are key environmental stimuli, exactly how they are sensed and how they activate mTORC1 is not fully understood. Recently, a model has emerged whereby mTORC1 activation occurs at the lysosome and is mediated through an amino acid sensing cascade involving RAG GTPases, Ragulator and vacuolar H(+)-ATPase (v-ATPase).


Asunto(s)
Aminoácidos/metabolismo , Lisosomas/metabolismo , Proteínas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Autofagia , Proliferación Celular , Humanos , Leucina-ARNt Ligasa/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Modelos Biológicos , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos , Neuropéptidos/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro
19.
Cell ; 152(1-2): 290-303, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23332761

RESUMEN

Autophagy is a stress response protecting cells from unfavorable conditions, such as nutrient starvation. The class III phosphatidylinositol-3 kinase, Vps34, forms multiple complexes and regulates both intracellular vesicle trafficking and autophagy induction. Here, we show that AMPK plays a key role in regulating different Vps34 complexes. AMPK inhibits the nonautophagy Vps34 complex by phosphorylating T163/S165 in Vps34 and therefore suppresses overall PI(3)P production and protects cells from starvation. In parallel, AMPK activates the proautophagy Vps34 complex by phosphorylating S91/S94 in Beclin1 to induce autophagy. Atg14L, an autophagy-essential gene present only in the proautophagy Vps34 complex, inhibits Vps34 phosphorylation but increases Beclin1 phosphorylation by AMPK. As such, Atg14L dictates the differential regulation (either inhibition or activation) of different Vps34 complexes in response to glucose starvation. Our study reveals an intricate molecular regulation of Vps34 complexes by AMPK in nutrient stress response and autophagy.


Asunto(s)
Autofagia , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Proteínas Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Secuencia de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Relacionadas con la Autofagia , Beclina-1 , Fosfatidilinositol 3-Quinasas Clase III/genética , Glucosa/metabolismo , Ratones , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Fosforilación , Proteínas Quinasas/química , Proteínas Quinasas/genética , Alineación de Secuencia , Proteínas de Transporte Vesicular/metabolismo
20.
Nat Cell Biol ; 14(12): 1322-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23143395

RESUMEN

Organ development is a complex process governed by the interplay of several signalling pathways that have critical functions in the regulation of cell growth and proliferation. Over the past years, the Hippo pathway has emerged as a key regulator of organ size. Perturbation of this pathway has been shown to play important roles in tumorigenesis. YAP, the main downstream target of the mammalian Hippo pathway, promotes organ growth, yet the underlying molecular mechanism of this regulation remains unclear. Here we provide evidence that YAP activates the mammalian target of rapamycin (mTOR), a major regulator of cell growth. We have identified the tumour suppressor PTEN, an upstream negative regulator of mTOR, as a critical mediator of YAP in mTOR regulation. We demonstrate that YAP downregulates PTEN by inducing miR-29 to inhibit PTEN translation. Last, we show that PI(3)K­mTOR is a pathway modulated by YAP to regulate cell size, tissue growth and hyperplasia. Our studies reveal a functional link between Hippo and PI(3)K­mTOR, providing a molecular basis for the coordination of these two pathways in organ size regulation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , MicroARNs/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Ciclo Celular , Línea Celular , Inmunoprecipitación de Cromatina , Cromonas/farmacología , Citometría de Flujo , Factor de Crecimiento de Hepatocito/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , MicroARNs/genética , Morfolinas/farmacología , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Serina-Treonina Quinasa 3 , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...