Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Sci Rep ; 12(1): 18506, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323770

RESUMEN

SARS coronavirus 2 (SARS-CoV-2) has caused an ongoing global pandemic with significant mortality and morbidity. At this time, the only FDA-approved therapeutic for COVID-19 is remdesivir, a broad-spectrum antiviral nucleoside analog. Efficacy is only moderate, and improved treatment strategies are urgently needed. To accomplish this goal, we devised a strategy to identify compounds that act synergistically with remdesivir in preventing SARS-CoV-2 replication. We conducted combinatorial high-throughput screening in the presence of submaximal remdesivir concentrations, using a human lung epithelial cell line infected with a clinical isolate of SARS-CoV-2. This identified 20 approved drugs that act synergistically with remdesivir, many with favorable pharmacokinetic and safety profiles. Strongest effects were observed with established antivirals, Hepatitis C virus nonstructural protein 5A (HCV NS5A) inhibitors velpatasvir and elbasvir. Combination with their partner drugs sofosbuvir and grazoprevir further increased efficacy, increasing remdesivir's apparent potency > 25-fold. We report that HCV NS5A inhibitors act on the SARS-CoV-2 exonuclease proofreader, providing a possible explanation for the synergy observed with nucleoside analog remdesivir. FDA-approved Hepatitis C therapeutics Epclusa® (velpatasvir/sofosbuvir) and Zepatier® (elbasvir/grazoprevir) could be further optimized to achieve potency and pharmacokinetic properties that support clinical evaluation in combination with remdesivir.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Hepatitis C , Humanos , SARS-CoV-2 , Antivirales/uso terapéutico , Sofosbuvir/farmacología , Nucleósidos/farmacología , Adenosina Monofosfato , Alanina , Hepacivirus , Hepatitis C/tratamiento farmacológico , Pulmón
2.
Viruses ; 14(7)2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35891393

RESUMEN

With the recent global spread of new SARS-CoV-2 variants, there remains an urgent need to develop effective and variant-resistant oral drugs. Recently, we reported in vitro results validating the use of combination drugs targeting both the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) and proofreading exonuclease (ExoN) as potential COVID-19 therapeutics. For the nucleotide analogues to be efficient SARS-CoV-2 inhibitors, two properties are required: efficient incorporation by RdRp and substantial resistance to excision by ExoN. Here, we have selected and evaluated nucleotide analogues with a variety of structural features for resistance to ExoN removal when they are attached at the 3' RNA terminus. We found that dideoxynucleotides and other nucleotides lacking both 2'- and 3'-OH groups were most resistant to ExoN excision, whereas those possessing both 2'- and 3'-OH groups were efficiently removed. We also found that the 3'-OH group in the nucleotide analogues was more critical than the 2'-OH for excision by ExoN. Since the functionally important sequences in Nsp14/10 are highly conserved among all SARS-CoV-2 variants, these identified structural features of nucleotide analogues offer invaluable insights for designing effective RdRp inhibitors that can be simultaneously efficiently incorporated by the RdRp and substantially resist ExoN excision. Such newly developed RdRp terminators would be good candidates to evaluate their ability to inhibit SARS-CoV-2 in cell culture and animal models, perhaps combined with additional exonuclease inhibitors to increase their overall effectiveness.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Antivirales/uso terapéutico , Exonucleasas , Nucleótidos/química , ARN Viral/genética
3.
Viruses ; 14(7)2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35891437

RESUMEN

Despite the fast development of vaccines, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still circulating and generating variants of concern (VoC) that escape the humoral immune response. In this context, the search for anti-SARS-CoV-2 compounds is still essential. A class of natural polyphenols known as flavonoids, frequently available in fruits and vegetables, is widely explored in the treatment of different diseases and used as a scaffold for the design of novel drugs. Therefore, herein we evaluate seven flavonoids divided into three subclasses, isoflavone (genistein), flavone (apigenin and luteolin) and flavonol (fisetin, kaempferol, myricetin, and quercetin), for COVID-19 treatment using cell-based assays and in silico calculations validated with experimental enzymatic data. The flavonols were better SARS-CoV-2 inhibitors than isoflavone and flavones. The increasing number of hydroxyl groups in ring B of the flavonols kaempferol, quercetin, and myricetin decreased the 50% effective concentration (EC50) value due to their impact on the orientation of the compounds inside the target. Myricetin and fisetin appear to be preferred candidates; they are both anti-inflammatory (decreasing TNF-α levels) and inhibit SARS-CoV-2 mainly by targeting the processability of the main protease (Mpro) in a non-competitive manner, with a potency comparable to the repurposed drug atazanavir. However, fisetin and myricetin might also be considered hits that are amenable to synthetic modification to improve their anti-SARS-CoV-2 profile by inhibiting not only Mpro, but also the 3'-5' exonuclease (ExoN).


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Flavonas , Isoflavonas , Flavonas/farmacología , Flavonoides/farmacología , Flavonoles/farmacología , Humanos , Isoflavonas/farmacología , Quempferoles , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas , Quercetina/farmacología , SARS-CoV-2
4.
Commun Biol ; 5(1): 154, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35194144

RESUMEN

SARS-CoV-2 has an exonuclease-based proofreader, which removes nucleotide inhibitors such as Remdesivir that are incorporated into the viral RNA during replication, reducing the efficacy of these drugs for treating COVID-19. Combinations of inhibitors of both the viral RNA-dependent RNA polymerase and the exonuclease could overcome this deficiency. Here we report the identification of hepatitis C virus NS5A inhibitors Pibrentasvir and Ombitasvir as SARS-CoV-2 exonuclease inhibitors. In the presence of Pibrentasvir, RNAs terminated with the active forms of the prodrugs Sofosbuvir, Remdesivir, Favipiravir, Molnupiravir and AT-527 were largely protected from excision by the exonuclease, while in the absence of Pibrentasvir, there was rapid excision. Due to its unique structure, Tenofovir-terminated RNA was highly resistant to exonuclease excision even in the absence of Pibrentasvir. Viral cell culture studies also demonstrate significant synergy using this combination strategy. This study supports the use of combination drugs that inhibit both the SARS-CoV-2 polymerase and exonuclease for effective COVID-19 treatment.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Exonucleasas/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales/antagonistas & inhibidores , Secuencia de Aminoácidos , Anilidas/farmacología , Animales , Secuencia de Bases , Bencimidazoles/farmacología , COVID-19/virología , Línea Celular Tumoral , Chlorocebus aethiops , Sinergismo Farmacológico , Exonucleasas/genética , Exonucleasas/metabolismo , Humanos , Prolina/farmacología , Pirrolidinas/farmacología , ARN Viral/genética , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Valina/farmacología , Células Vero , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
5.
bioRxiv ; 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34312622

RESUMEN

SARS-CoV-2 has an exonuclease-based proofreader, which removes nucleotide inhibitors such as Remdesivir that are incorporated into the viral RNA during replication, reducing the efficacy of these drugs for treating COVID-19. Combinations of inhibitors of both the viral RNA-dependent RNA polymerase and the exonuclease could overcome this deficiency. Here we report the identification of hepatitis C virus NS5A inhibitors Pibrentasvir and Ombitasvir as SARS-CoV-2 exonuclease inhibitors. In the presence of Pibrentasvir, RNAs terminated with the active forms of the prodrugs Sofosbuvir, Remdesivir, Favipiravir, Molnupiravir and AT-527 were largely protected from excision by the exonuclease, while in the absence of Pibrentasvir, there was rapid excision. Due to its unique structure, Tenofovir-terminated RNA was highly resistant to exonuclease excision even in the absence of Pibrentasvir. Viral cell culture studies also demonstrate significant synergy using this combination strategy. This study supports the use of combination drugs that inhibit both the SARS-CoV-2 polymerase and exonuclease for effective COVID-19 treatment.

6.
J Antimicrob Chemother ; 76(7): 1874-1885, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33880524

RESUMEN

BACKGROUND: Current approaches of drug repurposing against COVID-19 have not proven overwhelmingly successful and the SARS-CoV-2 pandemic continues to cause major global mortality. SARS-CoV-2 nsp12, its RNA polymerase, shares homology in the nucleotide uptake channel with the HCV orthologue enzyme NS5B. Besides, HCV enzyme NS5A has pleiotropic activities, such as RNA binding, that are shared with various SARS-CoV-2 proteins. Thus, anti-HCV NS5B and NS5A inhibitors, like sofosbuvir and daclatasvir, respectively, could be endowed with anti-SARS-CoV-2 activity. METHODS: SARS-CoV-2-infected Vero cells, HuH-7 cells, Calu-3 cells, neural stem cells and monocytes were used to investigate the effects of daclatasvir and sofosbuvir. In silico and cell-free based assays were performed with SARS-CoV-2 RNA and nsp12 to better comprehend the mechanism of inhibition of the investigated compounds. A physiologically based pharmacokinetic model was generated to estimate daclatasvir's dose and schedule to maximize the probability of success for COVID-19. RESULTS: Daclatasvir inhibited SARS-CoV-2 replication in Vero, HuH-7 and Calu-3 cells, with potencies of 0.8, 0.6 and 1.1 µM, respectively. Although less potent than daclatasvir, sofosbuvir alone and combined with daclatasvir inhibited replication in Calu-3 cells. Sofosbuvir and daclatasvir prevented virus-induced neuronal apoptosis and release of cytokine storm-related inflammatory mediators, respectively. Sofosbuvir inhibited RNA synthesis by chain termination and daclatasvir targeted the folding of secondary RNA structures in the SARS-CoV-2 genome. Concentrations required for partial daclatasvir in vitro activity are achieved in plasma at Cmax after administration of the approved dose to humans. CONCLUSIONS: Daclatasvir, alone or in combination with sofosbuvir, at higher doses than used against HCV, may be further fostered as an anti-COVID-19 therapy.


Asunto(s)
COVID-19 , Preparaciones Farmacéuticas , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Carbamatos , Chlorocebus aethiops , Humanos , Imidazoles , Pirrolidinas , ARN Viral , SARS-CoV-2 , Sofosbuvir/farmacología , Valina/análogos & derivados , Células Vero
8.
Pharmacol Res Perspect ; 8(6): e00674, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33124786

RESUMEN

SARS-CoV-2, a member of the coronavirus family, has caused a global public health emergency. Based on our analysis of hepatitis C virus and coronavirus replication, and the molecular structures and activities of viral inhibitors, we previously reasoned that the FDA-approved hepatitis C drug EPCLUSA (Sofosbuvir/Velpatasvir) should inhibit coronaviruses, including SARS-CoV-2. Here, using model polymerase extension experiments, we demonstrate that the active triphosphate form of Sofosbuvir is incorporated by low-fidelity polymerases and SARS-CoV RNA-dependent RNA polymerase (RdRp), and blocks further incorporation by these polymerases; the active triphosphate form of Sofosbuvir is not incorporated by a host-like high-fidelity DNA polymerase. Using the same molecular insight, we selected 3'-fluoro-3'-deoxythymidine triphosphate and 3'-azido-3'-deoxythymidine triphosphate, which are the active forms of two other anti-viral agents, Alovudine and AZT (an FDA-approved HIV/AIDS drug) for evaluation as inhibitors of SARS-CoV RdRp. We demonstrate the ability of two of these HIV reverse transcriptase inhibitors to be incorporated by SARS-CoV RdRp where they also terminate further polymerase extension. Given the 98% amino acid similarity of the SARS-CoV and SARS-CoV-2 RdRps, we expect these nucleotide analogues would also inhibit the SARS-CoV-2 polymerase. These results offer guidance to further modify these nucleotide analogues to generate more potent broad-spectrum anti-coronavirus agents.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Betacoronavirus/enzimología , COVID-19 , Carbamatos/farmacología , Infecciones por Coronavirus/virología , Didesoxinucleótidos/farmacología , Combinación de Medicamentos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Pandemias , Neumonía Viral/virología , SARS-CoV-2 , Sofosbuvir/farmacología , Nucleótidos de Timina/farmacología , Zidovudina/análogos & derivados , Zidovudina/farmacología
9.
Sci Rep ; 10(1): 16577, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33024223

RESUMEN

SARS-CoV-2 is responsible for COVID-19, resulting in the largest pandemic in over a hundred years. After examining the molecular structures and activities of hepatitis C viral inhibitors and comparing hepatitis C virus and coronavirus replication, we previously postulated that the FDA-approved hepatitis C drug EPCLUSA (Sofosbuvir/Velpatasvir) might inhibit SARS-CoV-2. We subsequently demonstrated that Sofosbuvir triphosphate is incorporated by the relatively low fidelity SARS-CoV and SARS-CoV-2 RNA-dependent RNA polymerases (RdRps), serving as an immediate polymerase reaction terminator, but not by a host-like high fidelity DNA polymerase. Other investigators have since demonstrated the ability of Sofosbuvir to inhibit SARS-CoV-2 replication in lung and brain cells; additionally, COVID-19 clinical trials with EPCLUSA and with Sofosbuvir plus Daclatasvir have been initiated in several countries. SARS-CoV-2 has an exonuclease-based proofreader to maintain the viral genome integrity. Any effective antiviral targeting the SARS-CoV-2 RdRp must display a certain level of resistance to this proofreading activity. We report here that Sofosbuvir terminated RNA resists removal by the exonuclease to a substantially higher extent than RNA terminated by Remdesivir, another drug being used as a COVID-19 therapeutic. These results offer a molecular basis supporting the current use of Sofosbuvir in combination with other drugs in COVID-19 clinical trials.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Exonucleasas/metabolismo , Neumonía Viral/tratamiento farmacológico , Profármacos/farmacología , ARN Viral/efectos de los fármacos , Sofosbuvir/farmacología , Adenosina Monofosfato/química , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Alanina/química , Alanina/farmacología , Alanina/uso terapéutico , Antivirales/química , Antivirales/uso terapéutico , Betacoronavirus/enzimología , COVID-19 , Infecciones por Coronavirus/virología , ARN Polimerasa Dependiente de ARN de Coronavirus , Descubrimiento de Drogas/métodos , Reposicionamiento de Medicamentos/métodos , Hepacivirus/efectos de los fármacos , Hepacivirus/enzimología , Hepatitis C/tratamiento farmacológico , Hepatitis C/virología , Humanos , Pandemias , Neumonía Viral/virología , Profármacos/uso terapéutico , ARN Viral/química , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2 , Sofosbuvir/química , Sofosbuvir/uso terapéutico , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
10.
J Proteome Res ; 19(11): 4690-4697, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32692185

RESUMEN

SARS-CoV-2 is responsible for the current COVID-19 pandemic. On the basis of our analysis of hepatitis C virus and coronavirus replication, and the molecular structures and activities of viral inhibitors, we previously demonstrated that three nucleotide analogues (the triphosphates of Sofosbuvir, Alovudine, and AZT) inhibit the SARS-CoV RNA-dependent RNA polymerase (RdRp). We also demonstrated that a library of additional nucleotide analogues terminate RNA synthesis catalyzed by the SARS-CoV-2 RdRp, a well-established drug target for COVID-19. Here, we used polymerase extension experiments to demonstrate that the active triphosphate form of Sofosbuvir (an FDA-approved hepatitis C drug) is incorporated by SARS-CoV-2 RdRp and blocks further incorporation. Using the molecular insight gained from the previous studies, we selected the active triphosphate forms of six other antiviral agents, Alovudine, Tenofovir alafenamide, AZT, Abacavir, Lamivudine, and Emtricitabine, for evaluation as inhibitors of the SARS-CoV-2 RdRp and demonstrated the ability of these viral polymerase inhibitors to be incorporated by SARS-CoV-2 RdRp, where they terminate further polymerase extension with varying efficiency. These results provide a molecular basis for inhibition of the SARS-CoV-2 RdRp by these nucleotide analogues. If sufficient efficacy of some of these FDA-approved drugs in inhibiting viral replication in cell culture is established, they may be explored as potential COVID-19 therapeutics.


Asunto(s)
Antivirales , Betacoronavirus , ARN Polimerasa Dependiente del ARN , Proteínas no Estructurales Virales , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacología , Betacoronavirus/enzimología , Betacoronavirus/genética , COVID-19 , Infecciones por Coronavirus/virología , Didesoxinucleósidos/química , Didesoxinucleósidos/metabolismo , Didesoxinucleósidos/farmacología , Humanos , Pandemias , Neumonía Viral/virología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2 , Sofosbuvir/química , Sofosbuvir/metabolismo , Sofosbuvir/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
11.
bioRxiv ; 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32511320

RESUMEN

SARS-CoV-2, a member of the coronavirus family, is responsible for the current COVID-19 pandemic. Based on our analysis of hepatitis C virus and coronavirus replication, and the molecular structures and activities of viral inhibitors, we previously demonstrated that three nucleotide analogues inhibit the SARS-CoV RNA-dependent RNA polymerase (RdRp). Here, using polymerase extension experiments, we have demonstrated that the active triphosphate form of Sofosbuvir (a key component of the FDA approved hepatitis C drug EPCLUSA), is incorporated by SARS-CoV-2 RdRp, and blocks further incorporation. Using the same molecular insight, we selected the active triphosphate forms of three other anti-viral agents, Alovudine, AZT (an FDA approved HIV/AIDS drug) and Tenofovir alafenamide (TAF, an FDA approved drug for HIV and hepatitis B) for evaluation as inhibitors of SARS-CoV-2 RdRp. We demonstrated the ability of these three viral polymerase inhibitors, 3'-fluoro-3'-deoxythymidine triphosphate, 3'-azido-3'-deoxythymidine triphosphate and Tenofovir diphosphate (the active triphosphate forms of Alovudine, AZT and TAF, respectively) to be incorporated by SARS-CoV-2 RdRp, where they also terminate further polymerase extension. These results offer a strong molecular basis for these nucleotide analogues to be evaluated as potential therapeutics for COVID-19.

12.
Antiviral Res ; 180: 104857, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32562705

RESUMEN

SARS-CoV-2, a member of the coronavirus family, is responsible for the current COVID-19 worldwide pandemic. We previously demonstrated that five nucleotide analogues inhibit the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp), including the active triphosphate forms of Sofosbuvir, Alovudine, Zidovudine, Tenofovir alafenamide and Emtricitabine. We report here the evaluation of a library of nucleoside triphosphate analogues with a variety of structural and chemical features as inhibitors of the RdRps of SARS-CoV and SARS-CoV-2. These features include modifications on the sugar (2' or 3' modifications, carbocyclic, acyclic, or dideoxynucleotides) or on the base. The goal is to identify nucleotide analogues that not only terminate RNA synthesis catalyzed by these coronavirus RdRps, but also have the potential to resist the viruses' exonuclease activity. We examined these nucleotide analogues for their ability to be incorporated by the RdRps in the polymerase reaction and to prevent further incorporation. While all 11 molecules tested displayed incorporation, 6 exhibited immediate termination of the polymerase reaction (triphosphates of Carbovir, Ganciclovir, Stavudine and Entecavir; 3'-OMe-UTP and Biotin-16-dUTP), 2 showed delayed termination (Cidofovir diphosphate and 2'-OMe-UTP), and 3 did not terminate the polymerase reaction (2'-F-dUTP, 2'-NH2-dUTP and Desthiobiotin-16-UTP). The coronaviruses possess an exonuclease that apparently requires a 2'-OH at the 3'-terminus of the growing RNA strand for proofreading. In this study, all nucleoside triphosphate analogues evaluated form Watson-Crick-like base pairs. The nucleotide analogues demonstrating termination either lack a 2'-OH, have a blocked 2'-OH, or show delayed termination. Thus, these nucleotide analogues are of interest for further investigation to evaluate whether they can evade the viral exonuclease activity. Prodrugs of five of these nucleotide analogues (Cidofovir, Abacavir, Valganciclovir/Ganciclovir, Stavudine and Entecavir) are FDA-approved medications for treatment of other viral infections, and their safety profiles are well established. After demonstrating potency in inhibiting viral replication in cell culture, candidate molecules can be rapidly evaluated as potential therapies for COVID-19.


Asunto(s)
Antivirales/farmacología , Infecciones por Coronavirus/virología , Nucleótidos/farmacología , Neumonía Viral/virología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Síndrome Respiratorio Agudo Grave/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Antivirales/química , Antivirales/uso terapéutico , Betacoronavirus/enzimología , Betacoronavirus/genética , COVID-19 , Cidofovir/química , Cidofovir/farmacología , Cidofovir/uso terapéutico , Infecciones por Coronavirus/tratamiento farmacológico , Didesoxinucleósidos/química , Didesoxinucleósidos/farmacología , Didesoxinucleósidos/uso terapéutico , Ganciclovir/química , Ganciclovir/farmacología , Ganciclovir/uso terapéutico , Guanina/análogos & derivados , Guanina/química , Guanina/farmacología , Guanina/uso terapéutico , Nucleótidos/química , Nucleótidos/uso terapéutico , Pandemias , Neumonía Viral/tratamiento farmacológico , Profármacos/química , Profármacos/farmacología , Profármacos/uso terapéutico , ARN Viral/antagonistas & inhibidores , ARN Viral/biosíntesis , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , SARS-CoV-2 , Síndrome Respiratorio Agudo Grave/tratamiento farmacológico , Estavudina/química , Estavudina/farmacología , Estavudina/uso terapéutico , Valganciclovir/química , Valganciclovir/farmacología , Valganciclovir/uso terapéutico
13.
ACS Chem Biol ; 15(6): 1464-1472, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32364699

RESUMEN

Post-transcriptional modifications are intrinsic to RNA structure and function. However, methods to sequence RNA typically require a cDNA intermediate and are either not able to sequence these modifications or are tailored to sequence one specific nucleotide modification only. Interestingly, some of these modifications occur with <100% frequency at their particular sites, and site-specific quantification of their stoichiometries is another challenge. Here, we report a direct method for sequencing tRNAPhe without cDNA by integrating a two-dimensional hydrophobic RNA end-labeling strategy with an anchor-based algorithm in mass spectrometry-based sequencing (2D-HELS-AA MS Seq). The entire tRNAPhe was sequenced and the identity, location, and stoichiometry of all eleven different RNA modifications was determined, five of which were not 100% modified, including a 2'-O-methylated G (Gm) in the wobble anticodon position as well as an N2, N2-dimethylguanosine (m22G), a 7-methylguanosine (m7G), a 1-methyladenosine (m1A), and a wybutosine (Y), suggesting numerous post-transcriptional regulations in tRNA. Two truncated isoforms at the 3'-CCA tail of the tRNAPhe (75 nt with a 3'-CC tail (80% abundance) and 74 nt with a 3'-C tail (3% abundance)) were identified in addition to the full-length 3'-CCA-tailed tRNAPhe (76 nt, 17% abundance). We discovered a new isoform with A-G transitions/editing at the 44 and 45 positions in the tRNAPhe variable loop, and discuss possible mechanisms related to the emergence and functions of the isoforms with these base transitions or editing. Our method revealed new isoforms, base modifications, and RNA editing as well as their stoichiometries in the tRNA that cannot be determined by current cDNA-based methods, opening new opportunities in the field of epitranscriptomics.


Asunto(s)
Emparejamiento Base , Espectrometría de Masas/métodos , ARN de Transferencia/química , Algoritmos , Interacciones Hidrofóbicas e Hidrofílicas , Isomerismo , Procesamiento Postranscripcional del ARN , Análisis de Secuencia de ARN/métodos
14.
Photochem Photobiol Sci ; 17(8): 1049-1055, 2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-29926889

RESUMEN

Epigenetic information is encoded in the mammalian genome in the form of cytosines methylated at the 5 position. Cytosine methylation has multiple biological effects, but our understanding of these effects has lagged because extant methods for mapping methylation sites genome-wide have severe shortcomings. For instance, the gold standard bisulfite sequencing approach suffers from the use of harsh reaction conditions resulting in DNA cleavage and incomplete conversion of unmethylated cytosine to uracil. We report here on a new photochemical method in which a DNA (cytosine-5)-methyltransferase can be used to covalently attach reactive functionalities which upon irradiation at ∼350 nm initiate photoinduced intramolecular reactions that convert modified C to T analogues. We synthesized a model compound, a cinnamyl ether-containing cytidine derivative, and demonstrated its conversion to a thymidine analogue using mild conditions and a DNA-compatible wavelength (∼350 nm), enabled by the use of a triplet sensitizer, thioxanthone. Transfer of a cinnamyl ether or comparable reactive functionality from an AdoMet analog to cytosine followed by the use of this photoconversion method would require only small amounts of DNA and allow complete methylation profiling on both long and short read sequencing platforms.


Asunto(s)
Citidina/química , Timidina/química , Islas de CpG , Reacción de Cicloadición , Citidina/síntesis química , ADN/química , ADN/metabolismo , Metilación de ADN , Rayos Láser , Espectroscopía de Resonancia Magnética , Fotólisis , Espectrofotometría Ultravioleta , Tioxantenos/química , Xantonas/química
15.
Genome Res ; 28(1): 11-24, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29242188

RESUMEN

To illuminate the extent and roles of exonic sequences in the splicing of human RNA transcripts, we conducted saturation mutagenesis of a 51-nt internal exon in a three-exon minigene. All possible single and tandem dinucleotide substitutions were surveyed. Using high-throughput genetics, 5560 minigene molecules were assayed for splicing in human HEK293 cells. Up to 70% of mutations produced substantial (greater than twofold) phenotypes of either increased or decreased splicing. Of all predicted secondary structural elements, only a single 15-nt stem-loop showed a strong correlation with splicing, acting negatively. The in vitro formation of exon-protein complexes between the mutant molecules and proteins associated with spliceosome formation (U2AF35, U2AF65, U1A, and U1-70K) correlated with splicing efficiencies, suggesting exon definition as the step affected by most mutations. The measured relative binding affinities of dozens of human RNA binding protein domains as reported in the CISBP-RNA database were found to correlate either positively or negatively with splicing efficiency, more than could fit on the 51-nt test exon simultaneously. The large number of these functional protein binding correlations point to a dynamic and heterogeneous population of pre-mRNA molecules, each responding to a particular collection of binding proteins.


Asunto(s)
Bases de Datos Genéticas , Exones/fisiología , Precursores del ARN , Factores de Empalme de ARN , Empalme del ARN/fisiología , Células HEK293 , Humanos , Dominios Proteicos , Precursores del ARN/química , Precursores del ARN/genética , Precursores del ARN/metabolismo , Factores de Empalme de ARN/química , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo
16.
Proc Natl Acad Sci U S A ; 113(44): E6749-E6756, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27729524

RESUMEN

Scalable, high-throughput DNA sequencing is a prerequisite for precision medicine and biomedical research. Recently, we presented a nanopore-based sequencing-by-synthesis (Nanopore-SBS) approach, which used a set of nucleotides with polymer tags that allow discrimination of the nucleotides in a biological nanopore. Here, we designed and covalently coupled a DNA polymerase to an α-hemolysin (αHL) heptamer using the SpyCatcher/SpyTag conjugation approach. These porin-polymerase conjugates were inserted into lipid bilayers on a complementary metal oxide semiconductor (CMOS)-based electrode array for high-throughput electrical recording of DNA synthesis. The designed nanopore construct successfully detected the capture of tagged nucleotides complementary to a DNA base on a provided template. We measured over 200 tagged-nucleotide signals for each of the four bases and developed a classification method to uniquely distinguish them from each other and background signals. The probability of falsely identifying a background event as a true capture event was less than 1.2%. In the presence of all four tagged nucleotides, we observed sequential additions in real time during polymerase-catalyzed DNA synthesis. Single-polymerase coupling to a nanopore, in combination with the Nanopore-SBS approach, can provide the foundation for a low-cost, single-molecule, electronic DNA-sequencing platform.


Asunto(s)
Electrodos , Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Nanoporos , Replicación del ADN , ADN Polimerasa Dirigida por ADN , Diseño de Equipo , Modelos Moleculares , Nucleótidos/análisis , Nucleótidos/química , Polímeros/química , Porinas/metabolismo
17.
Proc Natl Acad Sci U S A ; 113(19): 5233-8, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27091962

RESUMEN

DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5'-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods.


Asunto(s)
Conductometría/instrumentación , ADN/genética , Nanoporos/ultraestructura , Nucleótidos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Análisis de Secuencia de ADN/instrumentación , Secuencia de Bases , Sistemas de Computación , ADN/química , Diseño de Equipo , Análisis de Falla de Equipo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polímeros/química , Análisis de Secuencia de ADN/métodos , Coloración y Etiquetado/métodos
18.
Oncotarget ; 6(27): 24463-73, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26287603

RESUMEN

Steady state mRNA expression profiling can identify the majority of miRNA targets. However, some translationally repressed miRNA targets are missed and thus not considered for functional validation. Therefore, analysis of mRNA translation can enhance miRNA target identification for functional studies. We have applied a unique approach to identify miRNA targets in a small number of cells. Actively translating mRNAs are associated with polyribosomes and newly synthesized peptide chains are associated with molecular chaperones such as HSP70s. Affinity capture beads were used to capture HSP70 chaperones associated with polyribosome complexes. The isolated actively translating mRNAs were used for high throughput expression profiling analysis. miR-215 is an important miRNA in colorectal cancer and loss of miR-215 is significantly associated with prognosis of this disease. miR-215 suppresses the expression of several key targets. We utilized the affinity capture approach to isolate miR-215 mediated mRNA target transcripts. This approach provides a unique way to identify targets regulated by non-coding RNAs and RNA binding proteins from a small number of cells.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , MicroARNs/metabolismo , Algoritmos , Perfilación de la Expresión Génica , Células HCT116 , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Inmunoprecipitación , Chaperonas Moleculares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Polirribosomas/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribosomas/metabolismo
19.
RSC Adv ; 4(90): 49342-49346, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25396047

RESUMEN

As an alternative to fluorescence-based DNA sequencing by synthesis (SBS), we report here an approach using an azido moiety (N3) that has an intense, narrow and unique Raman shift at 2125 cm-1, where virtually all biological molecules are transparent, as a label for SBS. We first demonstrated that the four 3'-O-azidomethyl nucleotide reversible terminators (3'-O-azidomethyl-dNTPs) displayed surface enhanced Raman scattering (SERS) at 2125 cm-1. Using these 4 nucleotide analogues as substrates, we then performed a complete 4-step SBS reaction. We used SERS to monitor the appearance of the azide-specific Raman peak at 2125 cm-1 as a result of polymerase extension by a single 3'-O-azidomethyl-dNTP into the growing DNA strand and disappearance of this Raman peak with cleavage of the azido label to permit the next nucleotide incorporation, thereby continuously determining the DNA sequence. Due to the small size of the azido label, the 3'-O-azidomethyl-dNTPs are efficient substrates for the DNA polymerase. In the SBS cycles, the natural nucleotides are restored after each incorporation and cleavage, producing a growing DNA strand that bears no modifications and will not impede further polymerase reactions. Thus, with further improvements in SERS for the azido moiety, this approach has the potential to provide an attractive alternative to fluorescence-based SBS.

20.
RSC Adv ; 4(9): 4269-4277, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26594354

RESUMEN

Single-nucleotide polymorphisms (SNPs) are the most abundant type of genetic variations; they provide the genetic fingerprint of individuals and are essential for genetic biomarker discoveries. Accurate detection of SNPs is of great significance for disease prevention, diagnosis and prognosis, and for prediction of drug response and clinical outcomes in patients. Nevertheless, conventional SNP genotyping methods are still limited by insufficient accuracy or labor-, time-, and resource-intensive procedures. Microfluidics has been increasingly utilized to improve efficiency; however, the currently available microfluidic genotyping systems still have shortcomings in accuracy, sensitivity, throughput and multiplexing capability. To address these challenges, we developed a multi-step SNP genotyping microfluidic device, which performs single-base extension of SNP specific primers and solid-phase purification of the extension products on a temperature-controlled chip. The products are ready for immediate detection by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), providing identification of the alleles at the target loci. The integrated device enables efficient and automated operation, while maintaining the high accuracy and sensitivity provided by MS. The multiplex genotyping capability was validated by performing rapid, accurate and simultaneous detection of 4 loci on a synthetic template. The microfluidic device has the potential to perform automatic, accurate, quantitative and high-throughput assays covering a broad spectrum of applications in biological and clinical research, drug development and forensics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...