Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JBMR Plus ; 5(9): e10530, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34532615

RESUMEN

Osteogenesis imperfecta (OI), is a genetic disorder of bone fragility caused by mutations in collagen I or proteins involved in collagen processing. Previous studies in mice and human OI bones have shown that excessive activation of TGF-ß signaling plays an important role in dominant and recessive OI disease progression. Inhibition of TGF-ß signaling with a murine pan-specific TGF-ß neutralizing antibody (1D11) was shown to significantly increase trabecular bone volume and long bone strength in mouse models of OI. To investigate the frequency of dosing and dose options of TGF-ß neutralizing antibody therapy, we assessed the effect of 1D11 on disease progression in a dominant OI mouse model (col1a2 gene mutation at G610C). In comparison with OI mice treated with a control antibody, we attempted to define mechanistic effects of 1D11 measured via µCT, biomechanical, dynamic histomorphometry, and serum biomarkers of bone turnover. In addition, osteoblast and osteoclast numbers in histological bone sections were assessed to better understand the mechanism of action of the 1D11 antibody in OI. Here we show that 1D11 treatment resulted in both dose and frequency dependency, increases in trabecular bone volume fraction and ultimate force in lumbar bone, and ultimate force, bending strength, yield force, and yield strength in the femur (p ≤ 0.05). Suppression of serum biomarkers of osteoblast differentiation, osteocalcin, resorption, CTx-1, and bone formation were observed after 1D11 treatment of OI mice. Immunohistochemical analysis showed dose and frequency dependent decreases in runt-related transcription factor, and increase in alkaline phosphatase in lumbar bone sections. In addition, a significant decrease in TRACP and the number of osteoclasts to bone surface area was observed with 1D11 treatment. Our results show that inhibition of the TGF-ß pathway corrects the high-turnover aspects of bone disease and improves biomechanical properties of OI mice. These results highlight the potential for a novel treatment for osteogenesis imperfecta. © 2021 Sanofi-Genzyme. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

2.
Hum Mol Genet ; 29(15): 2508-2522, 2020 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-32620959

RESUMEN

Bardet-Biedl syndrome (BBS) is a pleiotropic autosomal recessive ciliopathy affecting multiple organs. The development of potential disease-modifying therapy for BBS will require concurrent targeting of multi-systemic manifestations. Here, we show for the first time that monosialodihexosylganglioside accumulates in Bbs2-/- cilia, indicating impairment of glycosphingolipid (GSL) metabolism in BBS. Consequently, we tested whether BBS pathology in Bbs2-/- mice can be reversed by targeting the underlying ciliary defect via reduction of GSL metabolism. Inhibition of GSL synthesis with the glucosylceramide synthase inhibitor Genz-667161 decreases the obesity, liver disease, retinal degeneration and olfaction defect in Bbs2-/- mice. These effects are secondary to preservation of ciliary structure and signaling, and stimulation of cellular differentiation. In conclusion, reduction of GSL metabolism resolves the multi-organ pathology of Bbs2-/- mice by directly preserving ciliary structure and function towards a normal phenotype. Since this approach does not rely on the correction of the underlying genetic mutation, it might translate successfully as a treatment for other ciliopathies.


Asunto(s)
Síndrome de Bardet-Biedl/genética , Cilios/genética , Ciliopatías/genética , Proteínas/genética , Animales , Síndrome de Bardet-Biedl/tratamiento farmacológico , Síndrome de Bardet-Biedl/patología , Diferenciación Celular/efectos de los fármacos , Cilios/patología , Ciliopatías/tratamiento farmacológico , Ciliopatías/patología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Gangliósidos/biosíntesis , Gangliósidos/genética , Glucosiltransferasas/antagonistas & inhibidores , Glucosiltransferasas/genética , Glicoesfingolípidos/biosíntesis , Glicoesfingolípidos/genética , Ratones Noqueados
3.
Hum Mol Genet ; 25(11): 2245-2255, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27053712

RESUMEN

Polycystic kidney diseases (PKDs) comprise a subgroup of ciliopathies characterized by the formation of fluid-filled kidney cysts and progression to end-stage renal disease. A mechanistic understanding of cystogenesis is crucial for the development of viable therapeutic options. Here, we identify CDK5, a kinase active in post mitotic cells, as a new and important mediator of PKD progression. We show that long-lasting attenuation of PKD in the juvenile cystic kidneys (jck) mouse model of nephronophthisis by pharmacological inhibition of CDK5 using either R-roscovitine or S-CR8 is accompanied by sustained shortening of cilia and a more normal epithelial phenotype, suggesting this treatment results in a reprogramming of cellular differentiation. Also, a knock down of Cdk5 in jck cells using small interfering RNA results in significant shortening of ciliary length, similar to what we observed with R-roscovitine. Finally, conditional inactivation of Cdk5 in the jck mice significantly attenuates cystic disease progression and is associated with shortening of ciliary length as well as restoration of cellular differentiation. Our results suggest that CDK5 may regulate ciliary length by affecting tubulin dynamics via its substrate collapsin response mediator protein 2. Taken together, our data support therapeutic approaches aimed at restoration of ciliogenesis and cellular differentiation as a promising strategy for the treatment of renal cystic diseases.


Asunto(s)
Cilios/efectos de los fármacos , Quinasa 5 Dependiente de la Ciclina/genética , Fallo Renal Crónico/tratamiento farmacológico , Enfermedades Renales Poliquísticas/tratamiento farmacológico , Animales , Diferenciación Celular/efectos de los fármacos , Cilios/patología , Quinasa 5 Dependiente de la Ciclina/antagonistas & inhibidores , Modelos Animales de Enfermedad , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Fallo Renal Crónico/genética , Fallo Renal Crónico/patología , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/patología , Purinas/administración & dosificación , Roscovitina , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
4.
Am J Physiol Renal Physiol ; 310(11): F1414-22, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27076647

RESUMEN

Polycystic kidney diseases (PKDs) are genetic diseases characterized by renal cyst formation with increased cell proliferation, apoptosis, and transition to a secretory phenotype at the expense of terminal differentiation. Despite recent progress in understanding PKD pathogenesis and the emergence of potential therapies, the key molecular mechanisms promoting cystogenesis are not well understood. Here, we demonstrate that mechanisms including endoplasmic reticulum stress, oxidative damage, and compromised mitochondrial function all contribute to nephronophthisis-associated PKD. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is emerging as a critical mediator of these cellular processes. Therefore, we reasoned that pharmacological targeting of CaMKII may translate into effective inhibition of PKD in jck mice. Our data demonstrate that CaMKII is activated within cystic kidney epithelia in jck mice. Blockade of CaMKII with a selective inhibitor results in effective inhibition of PKD in jck mice. Mechanistic experiments in vitro and in vivo demonstrated that CaMKII inhibition relieves endoplasmic reticulum stress and oxidative damage and improves mitochondrial integrity and membrane potential. Taken together, our data support CaMKII inhibition as a new and effective therapeutic avenue for the treatment of cystic diseases.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Riñón/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Enfermedades Renales Poliquísticas/metabolismo , Animales , Ratones
5.
Nat Med ; 16(7): 788-92, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20562878

RESUMEN

Polycystic kidney disease (PKD) represents a family of genetic disorders characterized by renal cystic growth and progression to kidney failure. No treatment is currently available for people with PKD, although possible therapeutic interventions are emerging. Despite genetic and clinical heterogeneity, PKDs have in common defects of cystic epithelia, including increased proliferation, apoptosis and activation of growth regulatory pathways. Sphingolipids and glycosphingolipids are emerging as major regulators of these cellular processes. We sought to evaluate the therapeutic potential for glycosphingolipid modulation as a new approach to treat PKD. Here we demonstrate that kidney glucosylceramide (GlcCer) and ganglioside GM3 levels are higher in human and mouse PKD tissue as compared to normal tissue, regardless of the causative mutation. Blockade of GlcCer accumulation with the GlcCer synthase inhibitor Genz-123346 effectively inhibits cystogenesis in mouse models orthologous to human autosomal dominant PKD (Pkd1 conditional knockout mice) and nephronophthisis (jck and pcy mice). Molecular analysis in vitro and in vivo indicates that Genz-123346 acts through inhibition of the two key pathways dysregulated in PKD: Akt protein kinase-mammalian target of rapamycin signaling and cell cycle machinery. Taken together, our data suggest that inhibition of GlcCer synthesis represents a new and effective treatment option for PKD.


Asunto(s)
Dioxanos/farmacología , Glucosilceramidas/biosíntesis , Enfermedades Renales Poliquísticas/metabolismo , Pirrolidinas/farmacología , Animales , Ciclo Celular , Modelos Animales de Enfermedad , Gangliósido G(M3)/metabolismo , Glucosiltransferasas/antagonistas & inhibidores , Glicoesfingolípidos/metabolismo , Humanos , Ratones , Ratones Noqueados , Enfermedades Renales Poliquísticas/tratamiento farmacológico , Ratas
6.
Am J Physiol Renal Physiol ; 294(1): F73-83, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17928412

RESUMEN

Development of novel therapies for polycystic kidney disease (PKD) requires assays that adequately reflect disease biology and are adaptable to high-throughput screening. Here we describe an embryonic cystic kidney organ culture model and demonstrate that a new mutant allele of the Pkd1 gene (Pkd1(tm1Bdgz)) modulates cystogenesis in this model. Cyst formation induced by cAMP is influenced by the dosage of the mutant allele: Pkd1(tm1Bdgz) -/- cultures develop a larger cystic area compared with +/+ counterparts, while Pkd1(tm1Bdgz) +/- cultures show an intermediate phenotype. A similar relationship between the degree of cystogenesis and mutant gene dosage is seen in cystic kidney organ cultures derived from mice with a mutated Nek8 gene (Nek8(jck)). Both Pkd1- and Nek8- cultures display altered cell-cell junctions, with reduced E-cadherin expression and altered desmosomal protein expression, similar to ADPKD epithelia. Additionally, characteristic ciliary abnormalities are identified in cystic kidney cultures, with elevated ciliary polycystin 1 expression in Nek8 homozygous cultures and elevated ciliary Nek8 protein expression in Pkd1 homozygotes. These data suggest that the Nek8 and Pkd1 genes function in a common pathway to regulate cystogenesis. Moreover, compound Pkd1 and Nek8 heterozygous adult mice develop a more aggressive cystic disease than animals with a mutation in either gene alone. Finally, we validate the kidney organ culture cystogenesis assay as a therapeutic testing platform using the CDK inhibitor roscovitine. Therefore, embryonic kidney organ culture represents a relevant model for studying molecular cystogenesis and a rapid tool for the screening for therapies that block cystic growth.


Asunto(s)
Adhesión Celular/fisiología , Cilios/metabolismo , Mutación/genética , Enfermedades Renales Poliquísticas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Canales Catiónicos TRPP/metabolismo , Alelos , Animales , Cadherinas/metabolismo , Adhesión Celular/genética , Cilios/efectos de los fármacos , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quistes/metabolismo , Quistes/fisiopatología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Noqueados , Quinasas Relacionadas con NIMA , Técnicas de Cultivo de Órganos , Enfermedades Renales Poliquísticas/fisiopatología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas , Purinas/farmacología , Roscovitina
7.
J Am Soc Nephrol ; 17(10): 2821-31, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16928806

RESUMEN

Significant progress in understanding the molecular mechanisms of polycystic kidney disease (PKD) has been made in recent years. Translating this understanding into effective therapeutics will require testing in animal models that closely resemble human PKD by multiple parameters. Similar to autosomal dominant PKD, juvenile cystic kidney (jck) mice develop cysts in multiple nephron segments, including cortical collecting ducts, distal tubules, and loop of Henle. The jck mice display gender dimorphism in kidney disease progression with more aggressive disease in male mice. Gonadectomy experiments show that testosterone aggravates the severity of the disease in jck male mice, while female gonadal hormones have protective effects. EGF receptor is overexpressed and mislocalized in jck cystic epithelia, a hallmark of human disease. Increased cAMP levels in jck kidneys and activation of the B-Raf/extracellular signal-regulated kinase pathway are demonstrated. The effect of jck mutation on the expression of Nek8, a NIMA-related (never in mitosis A) kinase, and polycystins in jck cilia is shown for the first time. Nek8 overexpression and loss of ciliary localization in jck epithelia are accompanied by enhanced expression of polycystins along the cilia. The primary cilia in jck kidneys are significantly more lengthened than the cilia in wild-type mice, suggesting a role for Nek8 in controlling ciliary length. Collectively, these data demonstrate that the jck mice should be useful for testing potential therapies and for studying the molecular mechanisms that link ciliary structure/function and cystogenesis.


Asunto(s)
Cilios/metabolismo , Trastornos de la Motilidad Ciliar/fisiopatología , Enfermedades Renales Quísticas/patología , Riñón Poliquístico Autosómico Dominante/etiología , Animales , Cilios/genética , AMP Cíclico/metabolismo , Progresión de la Enfermedad , Femenino , Hormonas Esteroides Gonadales/farmacología , Humanos , Immunoblotting , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Quinasas Relacionadas con NIMA , Riñón Poliquístico Autosómico Dominante/fisiopatología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Caracteres Sexuales , Transducción de Señal , Tasa de Supervivencia , Canales Catiónicos TRPP/metabolismo
8.
Histochem Cell Biol ; 124(6): 487-97, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16187067

RESUMEN

Mutations in polycystin-1 (PC-1) are responsible for autosomal dominant polycystic kidney disease (ADPKD), characterized by formation of fluid-filled tubular cysts. The PC-1 is a multifunctional protein essential for tubular differentiation and maturation found in desmosomal junctions of epithelial cells where its primary function is to mediate cell-cell adhesion. To address the impact of mutated PC-1 on intercellular adhesion, we have analyzed the structure/function of desmosomal junctions in primary cells derived from ADPKD cysts. Primary epithelial cells from normal kidney showed co-localization of PC-1 and desmosomal proteins at cell-cell contacts. A striking difference was seen in ADPKD cells, where PC-1 and desmosomal proteins were lost from the intercellular junction membrane, despite unchanged protein expression levels. Instead, punctate intracellular expression for PC-1 and desmosomal proteins was detected. The N-cadherin, but not E-cadherin was expressed in adherens junctions of ADPKD cells. These data together with co-sedimentation analysis demonstrate that, in the absence of functional PC-1, desmosomal junctions cannot be properly assembled and remain sequestered in cytoplasmic compartments. Taken together, our results demonstrate that PC-1 is crucial for formation of intercellular contacts. We propose that abnormal expression of PC-1 causes disregulation of cellular adhesion complexes leading to increased proliferation, loss of polarity and, ultimately, cystogenesis.


Asunto(s)
Desmosomas/patología , Células Epiteliales/patología , Uniones Intercelulares/patología , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/patología , Cadherinas/metabolismo , Cadherinas Desmosómicas/genética , Cadherinas Desmosómicas/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Regulación de la Expresión Génica , Humanos , Inmunohistoquímica , Uniones Intercelulares/metabolismo , Modelos Biológicos , Mutación , Riñón Poliquístico Autosómico Dominante/genética , Proteínas/genética , Proteínas/metabolismo , Sensibilidad y Especificidad , Canales Catiónicos TRPP
9.
Genomics ; 84(3): 497-510, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15498457

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in the PKD1 or PKD2 gene, but cellular mechanisms of cystogenesis remain unclear. In an attempt to display the array of cyst-specific molecules and to elucidate the disease pathway, we have performed comprehensive high-throughput expression analysis of normal and ADPKD epithelia in a two-step fashion. First, we generated expression profiles of normal and cystic epithelia derived from kidney and liver using serial analysis of gene expression (SAGE). We found 472 and 499 differentially expressed genes with fivefold difference in liver and kidney libraries, respectively. These genes encode growth factors, transcription factors, proteases, apoptotic factors, molecules involved in cell-extracellular matrix interactions, and ion channels. As a second step, we constructed a custom cDNA microarray using a subset of the differentially regulated genes identified by SAGE and interrogated ADPKD patient samples. Subsequently, a set of differentially expressed genes was refined to 26 up-regulated and 48 down-regulated genes with ap value of <0.01. This study may provide valuable insights into the pathophysiology of ADPKD and suggest potential therapeutic targets.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Genes/genética , Riñón/metabolismo , Hígado/metabolismo , Riñón Poliquístico Autosómico Dominante/genética , Análisis de Varianza , Cartilla de ADN , Epitelio/metabolismo , Biblioteca de Genes , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Genomics ; 80(1): 105-12, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12079289

RESUMEN

Most cases of autosomal dominant polycystic kidney disease are caused by mutations in the gene PKD1, encoding polycystin-1. To gain insight into the role of polycystin-1 in tubulogenesis and cystogenesis using the well-characterized canine kidney epithelial cell line MDCK, we have now cloned and characterized the exon/intron structure of the canine gene PKD1. FISH analysis showed that the dog genome lacks the multiple PKD1 homologs present in human. Intron 21 of dog PKD1 lacked the polypyrimidine tract characteristic of the human gene, whereas pyrimidine-rich elements were identified in canine intron 30. Canine polycystin-1 showed a higher degree of homology with the human counterpart and lower homology with mouse and rat. A striking degree of conservation (97% identity) was determined for the leucine-rich repeat domain between dog and human. Also, the homology analysis indicated that 4 of 16 Ig-like repeats (IgIII, IgVII, IgX, and IgXV) are likely to be functionally significant. This is particularly important in light of our recent findings demonstrating that Iglike domains form strong homophilic interactions and can mediate cell-cell adhesion. These data enable detailed analysis of the role of polycystin-1 in cystogenesis and tubulogenesis using the canine MDCK cell line.


Asunto(s)
Perros/genética , Proteínas/genética , Secuencia de Aminoácidos , Animales , Línea Celular , Clonación Molecular , Exones , Dosificación de Gen , Humanos , Intrones , Datos de Secuencia Molecular , Proteínas/química , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN , Análisis de Secuencia de Proteína , Homología de Secuencia de Aminoácido , Canales Catiónicos TRPP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...