Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38768633

RESUMEN

Observations of transiting gas giant exoplanets have revealed a pervasive depletion of methane1,2,3,4, which has only recently been identified atmospherically5,6. The depletion is thought to be maintained by disequilibrium processes such as photochemistry or mixing from a hotter interior7,8,9. However, the interiors are largely unconstrained along with the vertical mixing strength and only upper limits on the CH4 depletion have been available. The warm Neptune WASP-107 b stands out among exoplanets with an unusually low density, reported low core mass10, and temperatures amenable to CH4 though previous observations have yet to find the molecule2,4. Here we present a JWST NIRSpec transmission spectrum of WASP-107 b which shows features from both SO2 and CH4 along with H2O, CO2, and CO. We detect methane with 4.2σ significance at an abundance of 1.0±0.5 ppm, which is depleted by 3 orders of magnitude relative to equilibrium expectations. Our results are highly constraining for the atmosphere and interior, which indicate the envelope has a super-solar metallicity of 43±8× solar, a hot interior with an intrinsic temperature of Tint=460±40 K, and vigorous vertical mixing which depletes CH4 with a diffusion coefficient of Kzz = 1011.6±0.1 cm2/s. Photochemistry has a negligible effect on the CH4 abundance, but is needed to account for the SO2. We infer a core mass of 11.5 - 3.6 + 3.0 M⊕, which is much higher than previous upper limits10, releasing a tension with core-accretion models11.

2.
Nature ; 617(7961): 483-487, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37100917

RESUMEN

Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability1. However, no unambiguous photochemical products have been detected in exoplanet atmospheres so far. Recent observations from the JWST Transiting Exoplanet Community Early Release Science Program2,3 found a spectral absorption feature at 4.05 µm arising from sulfur dioxide (SO2) in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of around 1,100 K (ref. 4). The most plausible way of generating SO2 in such an atmosphere is through photochemical processes5,6. Here we show that the SO2 distribution computed by a suite of photochemical models robustly explains the 4.05-µm spectral feature identified by JWST transmission observations7 with NIRSpec PRISM (2.7σ)8 and G395H (4.5σ)9. SO2 is produced by successive oxidation of sulfur radicals freed when hydrogen sulfide (H2S) is destroyed. The sensitivity of the SO2 feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of about 10× solar. We further point out that SO2 also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations.

3.
Nature ; 614(7949): 670-675, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36623550

RESUMEN

The Saturn-mass exoplanet WASP-39b has been the subject of extensive efforts to determine its atmospheric properties using transmission spectroscopy1-4. However, these efforts have been hampered by modelling degeneracies between composition and cloud properties that are caused by limited data quality5-9. Here we present the transmission spectrum of WASP-39b obtained using the Single-Object Slitless Spectroscopy (SOSS) mode of the Near Infrared Imager and Slitless Spectrograph (NIRISS) instrument on the JWST. This spectrum spans 0.6-2.8 µm in wavelength and shows several water-absorption bands, the potassium resonance doublet and signatures of clouds. The precision and broad wavelength coverage of NIRISS/SOSS allows us to break model degeneracies between cloud properties and the atmospheric composition of WASP-39b, favouring a heavy-element enhancement ('metallicity') of about 10-30 times the solar value, a sub-solar carbon-to-oxygen (C/O) ratio and a solar-to-super-solar potassium-to-oxygen (K/O) ratio. The observations are also best explained by wavelength-dependent, non-grey clouds with inhomogeneous coverageof the planet's terminator.

4.
Nature ; 604(7904): 49-52, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35388193

RESUMEN

Aerosols have been found to be nearly ubiquitous in substellar atmospheres1-3. The precise temperature at which these aerosols begin to form in exoplanets has yet to be observationally constrained. Theoretical models and observations of muted spectral features indicate that silicate clouds play an important role in exoplanets between at least 950 and 2,100 K (ref. 4). Some giant planets, however, are thought to be hot enough to avoid condensation altogether5,6. Here we report the near-ultraviolet transmission spectrum of the ultra-hot Jupiter WASP-178b (approximately 2,450 K), which exhibits substantial absorption. Bayesian retrievals indicate the presence of gaseous refractory species containing silicon and magnesium, which are the precursors to condensate clouds at lower temperatures. SiO, in particular, has not previously, to our knowledge, been detected in exoplanets, but the presence of SiO in WASP-178b is consistent with theoretical expectations as the dominant Si-bearing species at high temperatures. These observations allow us to re-interpret previous observations of HAT-P-41b and WASP-121b that did not consider SiO, to suggest that silicate cloud formation begins on exoplanets with equilibrium temperatures between 1,950 and 2,450 K.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...