Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Cell Rep ; 38(11): 110532, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35294881

RESUMEN

Major depressive disorder is a complex disease resulting from aberrant synaptic plasticity that may be caused by abnormal serotonergic signaling. Using a combination of behavioral, biochemical, and imaging methods, we analyze 5-HT7R/MMP-9 signaling and dendritic spine plasticity in the hippocampus in mice treated with the selective 5-HT7R agonist (LP-211) and in a model of chronic unpredictable stress (CUS)-induced depressive-like behavior. We show that acute 5-HT7R activation induces depressive-like behavior in mice in an MMP-9-dependent manner and that post mortem brain samples from human individuals with depression reveal increased MMP-9 enzymatic activity in the hippocampus. Both pharmacological activation of 5-HT7R and modulation of its downstream effectors as a result of CUS lead to dendritic spine elongation and decreased spine density in this region. Overall, the 5-HT7R/MMP-9 pathway is specifically activated in the CA1 subregion of the hippocampus during chronic stress and is crucial for inducing depressive-like behavior.


Asunto(s)
Región CA1 Hipocampal , Trastorno Depresivo Mayor , Animales , Región CA1 Hipocampal/metabolismo , Trastorno Depresivo Mayor/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Receptores de Serotonina/metabolismo
3.
Neuroinformatics ; 20(3): 679-698, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34743262

RESUMEN

Three-dimensional segmentation and analysis of dendritic spine morphology involve two major challenges: 1) how to segment individual spines from the dendrites and 2) how to quantitatively assess the morphology of individual spines. To address these two issues, we developed software called 3dSpAn (3-dimensional Spine Analysis), based on implementing a previously published method, 3D multi-scale opening algorithm in shared intensity space. 3dSpAn consists of four modules: a) Preprocessing and Region of Interest (ROI) selection, b) Intensity thresholding and seed selection, c) Multi-scale segmentation, and d) Quantitative morphological feature extraction. In this article, we present the results of segmentation and morphological analysis for different observation methods and conditions, including in vitro and ex vivo imaging with confocal microscopy, and in vivo observations using high-resolution two-photon microscopy. In particular, we focus on software usage, the influence of adjustable parameters on the obtained results, user reproducibility, accuracy analysis, and also include a qualitative comparison with a commercial benchmark. 3dSpAn software is freely available for non-commercial use at www.3dSpAn.org .


Asunto(s)
Espinas Dendríticas , Imagenología Tridimensional , Imagenología Tridimensional/métodos , Microscopía Confocal/métodos , Reproducibilidad de los Resultados , Programas Informáticos
4.
PLoS One ; 16(6): e0239111, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34086671

RESUMEN

The Brain-Derived Neurotrophic Factor is one of the most important trophic proteins in the brain. The role of this growth factor in neuronal plasticity, in health and disease, has been extensively studied. However, mechanisms of epigenetic regulation of Bdnf gene expression in epilepsy are still elusive. In our previous work, using a rat model of neuronal activation upon kainate-induced seizures, we observed a repositioning of Bdnf alleles from the nuclear periphery towards the nuclear center. This change of Bdnf intranuclear position was associated with transcriptional gene activity. In the present study, using the same neuronal activation model, we analyzed the relation between the percentage of the Bdnf allele at the nuclear periphery and clinical and morphological traits of epilepsy. We observed that the decrease of the percentage of the Bdnf allele at the nuclear periphery correlates with stronger mossy fiber sprouting-an aberrant form of excitatory circuits formation. Moreover, using in vitro hippocampal cultures we showed that Bdnf repositioning is a consequence of transcriptional activity. Inhibition of RNA polymerase II activity in primary cultured neurons with Actinomycin D completely blocked Bdnf gene transcription and repositioning occurring after neuronal excitation. Interestingly, we observed that histone deacetylases inhibition with Trichostatin A induced a slight increase of Bdnf gene transcription and its repositioning even in the absence of neuronal excitation. Presented results provide novel insight into the role of BDNF in epileptogenesis. Moreover, they strengthen the statement that this particular gene is a good candidate to search for a new generation of antiepileptic therapies.


Asunto(s)
Axones/patología , Factor Neurotrófico Derivado del Encéfalo/genética , Epilepsia del Lóbulo Temporal/genética , Convulsiones/genética , Transcripción Genética/genética , Animales , Epigénesis Genética/genética , Epilepsia del Lóbulo Temporal/patología , Masculino , Fibras Musgosas del Hipocampo/patología , Neurogénesis/genética , Plasticidad Neuronal/genética , Ratas , Convulsiones/patología
5.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919977

RESUMEN

Numerous brain diseases are associated with abnormalities in morphology and density of dendritic spines, small membranous protrusions whose structural geometry correlates with the strength of synaptic connections. Thus, the quantitative analysis of dendritic spines remodeling in microscopic images is one of the key elements towards understanding mechanisms of structural neuronal plasticity and bases of brain pathology. In the following article, we review experimental approaches designed to assess quantitative features of dendritic spines under physiological stimuli and in pathological conditions. We compare various methodological pipelines of biological models, sample preparation, data analysis, image acquisition, sample size, and statistical analysis. The methodology and results of relevant experiments are systematically summarized in a tabular form. In particular, we focus on quantitative data regarding the number of animals, cells, dendritic spines, types of studied parameters, size of observed changes, and their statistical significance.


Asunto(s)
Citoesqueleto de Actina/genética , Encefalopatías/terapia , Espinas Dendríticas/fisiología , Citoesqueleto de Actina/fisiología , Animales , Encefalopatías/fisiopatología , Espinas Dendríticas/patología , Modelos Animales de Enfermedad , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Transmisión Sináptica
6.
Nat Commun ; 11(1): 2120, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32358536

RESUMEN

The human genome is extensively folded into 3-dimensional organization. However, the detailed 3D chromatin folding structures have not been fully visualized due to the lack of robust and ultra-resolution imaging capability. Here, we report the development of an electron microscopy method that combines serial block-face scanning electron microscopy with in situ hybridization (3D-EMISH) to visualize 3D chromatin folding at targeted genomic regions with ultra-resolution (5 × 5 × 30 nm in xyz dimensions) that is superior to the current super-resolution by fluorescence light microscopy. We apply 3D-EMISH to human lymphoblastoid cells at a 1.7 Mb segment of the genome and visualize a large number of distinctive 3D chromatin folding structures in ultra-resolution. We further quantitatively characterize the reconstituted chromatin folding structures by identifying sub-domains, and uncover a high level heterogeneity of chromatin folding ultrastructures in individual nuclei, suggestive of extensive dynamic fluidity in 3D chromatin states.


Asunto(s)
Cromatina/metabolismo , Cromatina/ultraestructura , Algoritmos , Línea Celular , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , ADN/ultraestructura , Humanos , Hibridación in Situ , Microscopía Confocal , Microscopía Electrónica , Microscopía Electrónica de Rastreo
7.
Neuropsychopharmacology ; 45(2): 404-415, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31254970

RESUMEN

To date, neurons have been the primary focus of research on the role of glucocorticoids in the regulation of brain function and pathological behaviors, such as addiction. Astrocytes, which are also glucocorticoid-responsive, have been recently implicated in the development of drug abuse, albeit through as yet undefined mechanisms. Here, using a spectrum of tools (whole-transcriptome profiling, viral-mediated RNA interference in vitro and in vivo, behavioral pharmacology and electrophysiology), we demonstrate that astrocytes in the nucleus accumbens (NAc) are an important locus of glucocorticoid receptor (GR)-dependent transcriptional changes that regulate rewarding effects of morphine. Specifically, we show that targeted knockdown of the GR in the NAc astrocytes enhanced conditioned responses to morphine, with a concomitant inhibition of morphine-induced neuronal excitability and plasticity. Interestingly, GR knockdown did not influence sensitivity to cocaine. Further analyses revealed GR-dependent regulation of astroglial metabolism. Notably, GR knockdown inhibited induced by glucocorticoids lactate release in astrocytes. Finally, lactate administration outbalanced conditioned responses to morphine in astroglial GR knockdown mice. These findings demonstrate a role of GR-dependent regulation of astrocytic metabolism in the NAc and a key role of GR-expressing astrocytes in opioid reward processing.


Asunto(s)
Analgésicos Opioides/farmacología , Astrocitos/metabolismo , Condicionamiento Psicológico/fisiología , Ácido Láctico/metabolismo , Morfina/farmacología , Receptores de Glucocorticoides/metabolismo , Animales , Astrocitos/efectos de los fármacos , Células Cultivadas , Condicionamiento Psicológico/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
8.
Front Neuroanat ; 13: 81, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31481881

RESUMEN

The detailed architectural examination of the neuronal nuclei in any brain region, using confocal microscopy, requires quantification of fluorescent signals in three-dimensional stacks of confocal images. An essential prerequisite to any quantification is the segmentation of the nuclei which are typically tightly packed in the tissue, the extreme being the hippocampal dentate gyrus (DG), in which nuclei frequently appear to overlap due to limitations in microscope resolution. Segmentation in DG is a challenging task due to the presence of a significant amount of image artifacts and densely packed nuclei. Accordingly, we established an algorithm based on continuous boundary tracing criterion aiming to reconstruct the nucleus surface and to separate the adjacent nuclei. The presented algorithm neither uses a pre-built nucleus model, nor performs image thresholding, which makes it robust against variations in image intensity and poor contrast. Further, the reconstructed surface is used to study morphology and spatial arrangement of the nuclear interior. The presented method is generally dedicated to segmentation of crowded, overlapping objects in 3D space. In particular, it allows us to study quantitatively the architecture of the neuronal nucleus using confocal-microscopic approach.

9.
Histochem Cell Biol ; 149(2): 113-126, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29134302

RESUMEN

Differentiation of progenitor cells into adipocytes is accompanied by remarkable changes in cell morphology, cytoskeletal organization, and gene expression profile. Mature adipocytes are filled with a large lipid droplet and the nucleus tends to move to the cell periphery. It was hypothesized that the differentiation process is also associated with changes of nuclear organization. The aim of this study was to determine the number and distribution of selected components of nuclear architecture during porcine in vitro adipogenesis. The pig is an important animal model sharing many similarities to humans at the anatomical, physiological, and genetic levels and has been recognized as a good model for human obesity. Thus, understanding how cellular structures important for fundamental nuclear processes may be altered during adipocyte differentiation is of great importance. Mesenchymal stem cells (MSCs) were derived from bone marrow (BM-MSCs) and adipose tissue (AD-MSCs) and were cultured for 7 days in the adipogenic medium. A variable differentiation potential of these cell populations towards adipogenic lineage was observed, and for further study, a comparative characteristic of the nuclear organization in BM-MSCs and AD-MSCs was performed. Nuclear substructures were visualized by indirect immunofluorescence (nucleoli, nuclear speckles, PML bodies, lamins, and HP1α) or fluorescence in situ hybridization (telomeres) on fixed cells at 0, 3, 5, and 7 days of differentiation. Comprehensive characterization of these structures, in terms of their number, size, dynamics, and arrangement in three-dimensional space of the nucleus, was performed. It was found that during differentiation of porcine MSCs into adipocytes, changes of nuclear organization occurred and concerned: (1) the nuclear size and shape; (2) reduced lamin A/C expression; and (3) reorganization of chromocenters. Other elements of nuclear architecture such as nucleoli, SC-35 nuclear speckles, and telomeres showed no significant changes when compared to undifferentiated and mature fat cells. In addition, the presence of a low number of PML bodies was characteristic of the studied porcine mesenchymal stem cell adipogenesis system. It has been shown that the arrangement of selected components of nuclear architecture was very similar in MSCs derived from different sources, whereas adipocyte differentiation involves nuclear reorganization. This study adds new data on nuclear organization during adipogenesis using the pig as a model organism.


Asunto(s)
Adipocitos/citología , Diferenciación Celular , Núcleo Celular/metabolismo , Células Madre Mesenquimatosas/citología , Animales , Células Cultivadas , Homólogo de la Proteína Chromobox 5 , Técnica del Anticuerpo Fluorescente Indirecta , Hibridación Fluorescente in Situ , Porcinos
10.
Bioinformatics ; 34(5): 845-852, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29028905

RESUMEN

Motivation: Fluorescence localization microscopy is extensively used to study the details of spatial architecture of subcellular compartments. This modality relies on determination of spatial positions of fluorophores, labeling an extended biological structure, with precision exceeding the diffraction limit. Several established models describe influence of pixel size, signal-to-noise ratio and optical resolution on the localization precision. The labeling density has been also recognized as important factor affecting reconstruction fidelity of the imaged biological structure. However, quantitative data on combined influence of sampling and localization errors on the fidelity of reconstruction are scarce. It should be noted that processing localization microscopy data is similar to reconstruction of a continuous (extended) non-periodic signal from a non-uniform, noisy point samples. In two dimensions the problem may be formulated within the framework of matrix completion. However, no systematic approach has been adopted in microscopy, where images are typically rendered by representing localized molecules with Gaussian distributions (widths determined by localization precision). Results: We analyze the process of two-dimensional reconstruction of extended biological structures as a function of the density of registered emitters, localization precision and the area occupied by the rendered localized molecule. We quantify overall reconstruction fidelity with different established image similarity measures. Furthermore, we analyze the recovered similarity measure in the frequency space for different reconstruction protocols. We compare the cut-off frequency to the limiting sampling frequency, as determined by labeling density. Availability and implementation: The source code used in the simulations along with test images is available at https://github.com/blazi13/qbioimages. Contact: bruszczy@nencki.gov.pl or t.bernas@nencki.gov.pl. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Programas Informáticos , Animales , Giro Dentado/citología , Neuronas/citología , Ratas , Relación Señal-Ruido
11.
Mol Biol Cell ; 27(25): 4055-4066, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27798233

RESUMEN

Synaptic cell adhesion molecules regulate signal transduction, synaptic function, and plasticity. However, their role in neuronal interactions with the extracellular matrix (ECM) is not well understood. Here we report that the CD44, a transmembrane receptor for hyaluronan, modulates synaptic plasticity. High-resolution ultrastructural analysis showed that CD44 was localized at mature synapses in the adult brain. The reduced expression of CD44 affected the synaptic excitatory transmission of primary hippocampal neurons, simultaneously modifying dendritic spine shape. The frequency of miniature excitatory postsynaptic currents decreased, accompanied by dendritic spine elongation and thinning. These structural and functional alterations went along with a decrease in the number of presynaptic Bassoon puncta, together with a reduction of PSD-95 levels at dendritic spines, suggesting a reduced number of functional synapses. Lack of CD44 also abrogated spine head enlargement upon neuronal stimulation. Moreover, our results indicate that CD44 contributes to proper dendritic spine shape and function by modulating the activity of actin cytoskeleton regulators, that is, Rho GTPases (RhoA, Rac1, and Cdc42). Thus CD44 appears to be a novel molecular player regulating functional and structural plasticity of dendritic spines.


Asunto(s)
Espinas Dendríticas/fisiología , Receptores de Hialuranos/fisiología , Plasticidad Neuronal/fisiología , Citoesqueleto de Actina/metabolismo , Animales , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , Células Dendríticas/citología , Células Dendríticas/fisiología , Espinas Dendríticas/metabolismo , Hipocampo/citología , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/metabolismo , Neuronas/citología , Ratas , Transducción de Señal/fisiología , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
12.
Brain Struct Funct ; 221(5): 2511-25, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-25956166

RESUMEN

PML is a tumor suppressor protein involved in the pathogenesis of promyelocytic leukemia. In non-neuronal cells, PML is a principal component of characteristic nuclear bodies. In the brain, PML has been implicated in the control of embryonic neurogenesis, and in certain physiological and pathological phenomena in the adult brain. Yet, the cellular and subcellular localization of the PML protein in the brain, including its presence in the nuclear bodies, has not been investigated comprehensively. Because the formation of PML bodies appears to be a key aspect in the function of the PML protein, we investigated the presence of these structures and their anatomical distribution, throughout the adult mouse brain. We found that PML is broadly expressed across the gray matter, with the highest levels in the cerebral and cerebellar cortices. In the cerebral cortex PML is present exclusively in neurons, in which it forms well-defined nuclear inclusions containing SUMO-1, SUMO 2/3, but not Daxx. At the ultrastructural level, the appearance of neuronal PML bodies differs from the classic one, i.e., the solitary structure with more or less distinctive capsule. Rather, neuronal PML bodies have the form of small PML protein aggregates located in the close vicinity of chromatin threads. The number, size, and signal intensity of neuronal PML bodies are dynamically influenced by immobilization stress and seizures. Our study indicates that PML bodies are broadly involved in activity-dependent nuclear phenomena in adult neurons.


Asunto(s)
Encéfalo/metabolismo , Neuronas/metabolismo , Proteína de la Leucemia Promielocítica/metabolismo , Animales , Corteza Cerebral/metabolismo , Cuerpos de Inclusión Intranucleares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína SUMO-1/metabolismo , Convulsiones/metabolismo , Estrés Psicológico/metabolismo
13.
Cell ; 163(7): 1611-27, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26686651

RESUMEN

Spatial genome organization and its effect on transcription remains a fundamental question. We applied an advanced chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) strategy to comprehensively map higher-order chromosome folding and specific chromatin interactions mediated by CCCTC-binding factor (CTCF) and RNA polymerase II (RNAPII) with haplotype specificity and nucleotide resolution in different human cell lineages. We find that CTCF/cohesin-mediated interaction anchors serve as structural foci for spatial organization of constitutive genes concordant with CTCF-motif orientation, whereas RNAPII interacts within these structures by selectively drawing cell-type-specific genes toward CTCF foci for coordinated transcription. Furthermore, we show that haplotype variants and allelic interactions have differential effects on chromosome configuration, influencing gene expression, and may provide mechanistic insights into functions associated with disease susceptibility. 3D genome simulation suggests a model of chromatin folding around chromosomal axes, where CTCF is involved in defining the interface between condensed and open compartments for structural regulation. Our 3D genome strategy thus provides unique insights in the topological mechanism of human variations and diseases.


Asunto(s)
Cromatina/química , Genoma Humano , Proteínas Represoras/metabolismo , Transcripción Genética , Animales , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Empaquetamiento del ADN , Humanos , ARN Polimerasa II/metabolismo , Salamandridae , Cohesinas
14.
Nat Commun ; 5: 4450, 2014 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-25034090

RESUMEN

The interior of the neuronal cell nucleus is a highly organized three-dimensional (3D) structure where regions of the genome that are linearly millions of bases apart establish sub-structures with specialized functions. To investigate neuronal chromatin organization and dynamics in vivo, we generated bitransgenic mice expressing GFP-tagged histone H2B in principal neurons of the forebrain. Surprisingly, the expression of this chimeric histone in mature neurons caused chromocenter declustering and disrupted the association of heterochromatin with the nuclear lamina. The loss of these structures did not affect neuronal viability but was associated with specific transcriptional and behavioural deficits related to serotonergic dysfunction. Overall, our results demonstrate that the 3D organization of chromatin within neuronal cells provides an additional level of epigenetic regulation of gene expression that critically impacts neuronal function. This in turn suggests that some loci associated with neuropsychiatric disorders may be particularly sensitive to changes in chromatin architecture.


Asunto(s)
Conducta Animal/fisiología , Cromatina/ultraestructura , Neuronas/fisiología , Serotonina/metabolismo , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Cromatina/química , Cromatina/genética , Epigénesis Genética , Eucromatina/metabolismo , Eucromatina/ultraestructura , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/ultraestructura , Prosencéfalo/metabolismo , Prosencéfalo/patología , Receptores de Serotonina/genética , Transcripción Genética
15.
PLoS One ; 9(5): e98274, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24853857

RESUMEN

Synapses are particularly prone to dynamic alterations and thus play a major role in neuronal plasticity. Dynamic excitatory synapses are located at the membranous neuronal protrusions called dendritic spines. The ability to change synaptic connections involves both alterations at the morphological level and changes in postsynaptic receptor composition. We report that endogenous matrix metalloproteinase (MMP) activity promotes the structural and functional plasticity of local synapses by its effect on glutamate receptor mobility and content. We used live imaging of cultured hippocampal neurons and quantitative morphological analysis to show that chemical long-term potentiation (cLTP) induces the permanent enlargement of a subset of small dendritic spines in an MMP-dependent manner. We also used a superresolution microscopy approach and found that spine expansion induced by cLTP was accompanied by MMP-dependent immobilization and synaptic accumulation as well as the clustering of GluA1-containing AMPA receptors. Altogether, our results reveal novel molecular and cellular mechanisms of synaptic plasticity.


Asunto(s)
Metaloproteinasas de la Matriz/metabolismo , Plasticidad Neuronal , Receptores AMPA/metabolismo , Sinapsis/enzimología , Adulto , Animales , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Ratas Wistar
16.
PLoS One ; 8(5): e63314, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23696812

RESUMEN

Dendritic spines are are small membranous protrusions that extend from neuronal dendrites and harbor the majority of excitatory synapses. Increasing evidence has shown that matrix metalloproteinases (MMPs), a family of extracellularly acting and Zn(2+)-dependent endopeptidases, are able to rapidly modulate dendritic spine morphology. Spine head protrusions (SHPs) are filopodia-like processes that extend from the dendritic spine head, representing a form of postsynaptic structural remodeling in response to altered neuronal activity. Herein, we show that chemically induced long-term potentiation (cLTP) in dissociated hippocampal cultures upregulates MMP-9 activity that controls the formation of SHPs. Blocking of MMPs activity or microtubule dynamics abolishes the emergence of SHPs. In addition, autoactive recombinant MMP-9, promotes the formation of SHPs in organotypic hippocampal slices. Furthermore, spines with SHPs gained postsynaptic α-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA) receptors upon cLTP and the synaptic delivery of AMPA receptors was controlled by MMPs. The present results strongly imply that MMP-9 is functionally involved in the formation of SHPs and the control of postsynaptic receptor distribution upon cLTP.


Asunto(s)
Espinas Dendríticas/metabolismo , Potenciación a Largo Plazo/fisiología , Metaloproteinasas de la Matriz/metabolismo , Animales , Células Cultivadas , Metaloproteinasa 9 de la Matriz/metabolismo , Microtúbulos/metabolismo , Ratas , Ratas Wistar , Receptores AMPA/metabolismo
17.
J Neurosci ; 33(6): 2507-11, 2013 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-23392678

RESUMEN

Studies in cultured cells have demonstrated the existence of higher-order epigenetic mechanisms, determining the relationship between expression of the gene and its position within the cell nucleus. It is unknown, whether such mechanisms operate in postmitotic, highly differentiated cell types, such as neurons in vivo. Accordingly, we examined whether the intranuclear positions of Bdnf and Trkb genes, encoding the major neurotrophin and its receptor respectively, change as a result of neuronal activity, and what functional consequences such movements may have. In a rat model of massive neuronal activation upon kainate-induced seizures we found that elevated neuronal expression of Bdnf is associated with its detachment from the nuclear lamina, and translocation toward the nucleus center. In contrast, the position of stably expressed Trkb remains unchanged after seizures. Our study demonstrates that activation-dependent architectural remodeling of the neuronal cell nucleus in vivo contributes to activity-dependent changes in gene expression in the brain.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Epigénesis Genética/fisiología , Receptor trkB/fisiología , Convulsiones/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/fisiología , Núcleo Celular/genética , Núcleo Celular/metabolismo , Masculino , Ratas , Ratas Wistar , Convulsiones/genética , Translocación Genética/fisiología
18.
BMC Bioinformatics ; 13: 213, 2012 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-22920322

RESUMEN

BACKGROUND: Quantitative analysis of changes in dendritic spine morphology has become an interesting issue in contemporary neuroscience. However, the diversity in dendritic spine population might seriously influence the result of measurements in which their morphology is studied. The detection of differences in spine morphology between control and test group is often compromised by the number of dendritic spines taken for analysis. In order to estimate the impact of dendritic spine diversity we performed Monte Carlo simulations examining various experimental setups and statistical approaches. The confocal images of dendritic spines from hippocampal dissociated cultures have been used to create a set of variables exploited as the simulation resources. RESULTS: The tabulated results of simulations given in this article, provide the number of dendritic spines required for the detection of hidden morphological differences between control and test groups in terms of spine head-width, length and area. It turns out that this is the head-width among these three variables, where the changes are most easily detected. Simulation of changes occurring in a subpopulation of spines reveal the strong dependence of detectability on the statistical approach applied. The analysis based on comparison of percentage of spines in subclasses is less sensitive than the direct comparison of relevant variables describing spines morphology. CONCLUSIONS: We evaluated the sampling aspect and effect of systematic morphological variation on detecting the differences in spine morphology. The results provided here may serve as a guideline in selecting the number of samples to be studied in a planned experiment. Our simulations might be a step towards the development of a standardized method of quantitative comparison of dendritic spines morphology, in which different sources of errors are considered.


Asunto(s)
Espinas Dendríticas/ultraestructura , Animales , Hipocampo/citología , Microscopía Confocal , Método de Montecarlo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...