Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Oecologia ; 202(3): 465-480, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37365409

RESUMEN

Wild honeybees (Apis mellifera) are considered extinct in most parts of Europe. The likely causes of their decline include increased parasite burden, lack of high-quality nesting sites and associated depredation pressure, and food scarcity. In Germany, feral honeybees still colonize managed forests, but their survival rate is too low to maintain viable populations. Based on colony observations collected during a monitoring study, data on parasite prevalence, experiments on nest depredation, and analyses of land cover maps, we explored whether parasite pressure, depredation or expected landscape-level food availability explain feral colony winter mortality. Considering the colony-level occurrence of 18 microparasites in the previous summer, colonies that died did not have a higher parasite burden than colonies that survived. Camera traps installed at cavity trees revealed that four woodpecker species, great tits, and pine martens act as nest depredators. In a depredator exclusion experiment, the winter survival rate of colonies in cavities with protected entrances was 50% higher than that of colonies with unmanipulated entrances. Landscapes surrounding surviving colonies contained on average 6.4 percentage points more cropland than landscapes surrounding dying colonies, with cropland being known to disproportionately provide forage for bees in our study system. We conclude that the lack of spacious but well-protected nesting cavities and the shortage of food are currently more important than parasites in limiting populations of wild-living honeybees in German forests. Increasing the density and diversity of large tree cavities and promoting bee forage plants in forests will probably promote wild-living honeybees despite parasite pressure.


Asunto(s)
Parásitos , Animales , Abejas , Bosques , Europa (Continente) , Árboles , Alemania
2.
R Soc Open Sci ; 9(8): 220565, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35950195

RESUMEN

European honeybee populations are considered to consist only of managed colonies, but recent censuses have revealed that wild/feral colonies still occur in various countries. To gauge the ecological and evolutionary relevance of wild-living honeybees, information is needed on their population demography. We monitored feral honeybee colonies in German forests for up to 4 years through regular inspections of woodpecker cavity trees and microsatellite genotyping. Each summer, about 10% of the trees were occupied, corresponding to average densities of 0.23 feral colonies km-2 (an estimated 5% of the regional honeybee populations). Populations decreased moderately until autumn but dropped massively during winter, so that their densities were only about 0.02 colonies km-2 in early spring. During the reproductive (swarming) season, in May and June, populations recovered, with new swarms preferring nest sites that had been occupied in the previous year. The annual survival rate and the estimated lifespan of feral colonies (n = 112) were 10.6% and 0.6 years, respectively. We conclude that managed forests in Germany do not harbour self-sustaining feral honeybee populations, but they are recolonized every year by swarms escaping from apiaries.

3.
J Exp Biol ; 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795415

RESUMEN

Honey bees estimate distances to food sources using image motion experienced on the flight path and they use this measure to tune the waggle phase duration in their dance communication. Most studies on the dance-related odometer are based on experiments with Apis mellifera foragers trained into small tunnels with black and white patterns which allowed quantifiable changes in the optic flow. In this study, we determined the calibration curves of two Asian honey bee species, A. florea and A. cerana, in two different natural environments with clear differences in the vegetation conditions and hence visual contrast. We found that the dense vegetation condition (with higher contrast) elicited a more rapid increase in the waggle phase duration with distance than the sparse vegetation in A. florea but not in A. cerana Our findings suggest that contrast sensitivity of the waggle dance odometer might vary among honey bee species.

4.
PeerJ ; 9: e11187, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868825

RESUMEN

Honey bees (genus Apis) can communicate the approximate location of a resource to their nestmates via the waggle dance. The distance to a goal is encoded by the duration of the waggle phase of the dance, but the precise shape of this distance-duration relationship is ambiguous: earlier studies (before the 1990s) proposed that it is non-linear, with the increase in waggle duration flattening with distance, while more recent studies suggested that it follows a simple linear function (i.e. a straight line). Strikingly, authors of earlier studies trained bees to much longer distances than authors of more recent studies, but unfortunately they usually measured the duration of dance circuits (waggle phase plus return phase of the dance), which is only a correlate of the bees' distance signal. We trained honey bees (A. mellifera carnica) to visit sugar feeders over a relatively long array of distances between 0.1 and 1.7 km from the hive and measured the duration of both the waggle phase and the return phase of their dances from video recordings. The distance-related increase in waggle duration was better described by a non-linear model with a decreasing slope than by a simple linear model. The relationship was equally well captured by a model with two linear segments separated at a "break-point" at 1 km distance. In turn, the relationship between return phase duration and distance was sufficiently well described by a simple linear model. The data suggest that honey bees process flight distance differently before and beyond a certain threshold distance. While the physiological and evolutionary causes of this behavior remain to be explored, our results can be applied to improve the estimation of honey bee foraging distances based on the decoding of waggle dances.

5.
PeerJ ; 9: e10473, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33569245

RESUMEN

BACKGROUND: The African violets are endangered plant species restricted mainly to the Eastern Arc Mountains biodiversity hotspots in Kenya and Tanzania. These plants grow well in shaded environments with high humidity. Given their restricted geographical range and published evidence of dependance on insect vectors to facilitate sexual reproduction, understanding their pollination biology is vital for their survival. METHODS: We conducted an empirical study using flower visitor observations, pan trapping and bagging experiments to establish the role of flower visitors in the fruit set of a locally endemic and critically endangered species of African violet in Taita Hills, Kenya, Streptocarpus teitensis. RESULTS: The study found that fruit set is increased by 47.8% in S. teitensis when flowers are visited by insects. However, it is important to note the presence of putative autogamy suggesting S. teitensis could have a mixed breeding system involving self-pollination and cross-pollination since bagged flowers produced 26.9% fruit set. CONCLUSIONS: Insects appear to be essential flower visitors necessary for increased fruit set in S. teitensis. However, there is evidence of a mixed breeding system involving putative self-pollination and cross-pollination suggesting that S. teitensis is somewhat shielded from the negative effects of pollinator losses. Consequently, S. teitensis appears to be protected to a degree from the risks such as reproduction failure associated with pollinator losses by the presence of a safety net in putative self-pollination.

6.
Insects ; 13(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35055848

RESUMEN

In vitro rearing of honeybee larvae is an established method that enables exact control and monitoring of developmental factors and allows controlled application of pesticides or pathogens. However, only a few studies have investigated how the rearing method itself affects the behavior of the resulting adult honeybees. We raised honeybees in vitro according to a standardized protocol: marking the emerging honeybees individually and inserting them into established colonies. Subsequently, we investigated the behavioral performance of nurse bees and foragers and quantified the physiological factors underlying the social organization. Adult honeybees raised in vitro differed from naturally reared honeybees in their probability of performing social tasks. Further, in vitro-reared bees foraged for a shorter duration in their life and performed fewer foraging trips. Nursing behavior appeared to be unaffected by rearing condition. Weight was also unaffected by rearing condition. Interestingly, juvenile hormone titers, which normally increase strongly around the time when a honeybee becomes a forager, were significantly lower in three- and four-week-old in vitro bees. The effects of the rearing environment on individual sucrose responsiveness and lipid levels were rather minor. These data suggest that larval rearing conditions can affect the task performance and physiology of adult bees despite equal weight, pointing to an important role of the colony environment for these factors. Our observations of behavior and metabolic pathways offer important novel insight into how the rearing environment affects adult honeybees.

7.
Proc Biol Sci ; 287(1922): 20200190, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32126959

RESUMEN

Efficient communication is highly important for the evolutionary success of social animals. Honeybees (genus Apis) are unique in that they communicate the spatial information of resources using a symbolic 'language', the waggle dance. Different honeybee species differ in foraging ecology but it remains unknown whether this shaped variation in the dance. We studied distance dialects-interspecific differences in how waggle duration relates to flight distance-and tested the hypothesis that these evolved to maximize communication precision over the bees' foraging ranges. We performed feeder experiments with Apis cerana, A. florea and A. dorsata in India and found that A. cerana had the steepest dialect, i.e. a rapid increase in waggle duration with increasing feeder distance, A. florea had an intermediate, and A. dorsata had the lowest dialect. By decoding dances for natural food sites, we inferred that the foraging range was smallest in A. cerana, intermediate in A. florea and largest in A. dorsata. The inverse correlation between foraging range and dialect was corroborated when comparing six (sub)species across the geographical range of the genus including previously published data. We conclude that dance dialects constitute adaptations resulting from a trade-off between the spatial range and the spatial accuracy of communication.


Asunto(s)
Adaptación Fisiológica , Comunicación Animal , Abejas , Animales , India , Actividad Motora
8.
PeerJ ; 6: e4602, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29637025

RESUMEN

It is a common belief that feral honey bee colonies (Apis mellifera L.) were eradicated in Europe through the loss of habitats, domestication by man and spread of pathogens and parasites. Interestingly, no scientific data are available, neither about the past nor the present status of naturally nesting honeybee colonies. We expected near-natural beech (Fagus sylvatica L.) forests to provide enough suitable nest sites to be a home for feral honey bee colonies in Europe. Here, we made a first assessment of their occurrence and density in two German woodland areas based on two methods, the tracing of nest sites based on forager flight routes (beelining technique), and the direct inspection of potential cavity trees. Further, we established experimental swarms at forest edges and decoded dances for nest sites performed by scout bees in order to study how far swarms from beekeeper-managed hives would potentially move into a forest. We found that feral honey bee colonies regularly inhabit tree cavities in near-natural beech forests at densities of at least 0.11-0.14 colonies/km2. Colonies were not confined to the forest edges; they were also living deep inside the forests. We estimated a median distance of 2,600 m from the bee trees to the next apiaries, while scout bees in experimental swarms communicated nest sites in close distances (median: 470 m). We extrapolate that there are several thousand feral honey bee colonies in German woodlands. These have to be taken in account when assessing the role of forest areas in providing pollination services to the surrounding land, and their occurrence has implications for the species' perception among researchers, beekeepers and conservationists. This study provides a starting point for investigating the life-histories and the ecological interactions of honey bees in temperate European forest environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...