Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuroinformatics ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38763990

RESUMEN

Magnetic resonance imaging of the brain is a useful tool in both the clinic and research settings, aiding in the diagnosis and treatments of neurological disease and expanding our knowledge of the brain. However, there are many challenges inherent in managing and analyzing MRI data, due in large part to the heterogeneity of data acquisition. To address this, we have developed MRIO, the Magnetic Resonance Imaging Acquisition and Analysis Ontology. MRIO provides well-reasoned classes and logical axioms for the acquisition of several MRI acquisition types and well-known, peer-reviewed analysis software, facilitating the use of MRI data. These classes provide a common language for the neuroimaging research process and help standardize the organization and analysis of MRI data for reproducible datasets. We also provide queries for automated assignment of analyses for given MRI types. MRIO aids researchers in managing neuroimaging studies by helping organize and annotate MRI data and integrating with existing standards such as Digital Imaging and Communications in Medicine and the Brain Imaging Data Structure, enhancing reproducibility and interoperability. MRIO was constructed according to Open Biomedical Ontologies Foundry principles and has contributed several classes to the Ontology for Biomedical Investigations to help bridge neuroimaging data to other domains. MRIO addresses the need for a "common language" for MRI that can help manage the neuroimaging research, by enabling researchers to identify appropriate analyses for sets of scans and facilitating data organization and reporting.

2.
Standards (Basel) ; 3(3): 316-340, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37873508

RESUMEN

The translational research community, in general, and the Clinical and Translational Science Awards (CTSA) community, in particular, share the vision of repurposing EHRs for research that will improve the quality of clinical practice. Many members of these communities are also aware that electronic health records (EHRs) suffer limitations of data becoming poorly structured, biased, and unusable out of original context. This creates obstacles to the continuity of care, utility, quality improvement, and translational research. Analogous limitations to sharing objective data in other areas of the natural sciences have been successfully overcome by developing and using common ontologies. This White Paper presents the authors' rationale for the use of ontologies with computable semantics for the improvement of clinical data quality and EHR usability formulated for researchers with a stake in clinical and translational science and who are advocates for the use of information technology in medicine but at the same time are concerned by current major shortfalls. This White Paper outlines pitfalls, opportunities, and solutions and recommends increased investment in research and development of ontologies with computable semantics for a new generation of EHRs.

3.
bioRxiv ; 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37609265

RESUMEN

Objective: Magnetic resonance imaging of the brain is a useful tool in both the clinic and research settings, aiding in the diagnosis and treatments of neurological disease and expanding our knowledge of the brain. However, there are many challenges inherent in managing and analyzing MRI data, due in large part to the heterogeneity of data acquisition. Materials and Methods: To address this, we have developed MRIO, the Magnetic Resonance Imaging Acquisition and Analysis Ontology. Results: MRIO provides well-reasoned classes and logical axioms for the acquisition of several MRI acquisition types and well-known, peer-reviewed analysis software, facilitating the use of MRI data. These classes provide a common language for the neuroimaging research process and help standardize the organization and analysis of MRI data for reproducible datasets. We also provide queries for automated assignment of analyses for given MRI types. Discussion: MRIO aids researchers in managing neuroimaging studies by helping organize and annotate MRI data and integrating with existing standards such as Digital Imaging and Communications in Medicine and the Brain Imaging Data Structure, enhancing reproducibility and interoperability. MRIO was constructed according to Open Biomedical Ontologies Foundry principals and has contributed several terms to the Ontology for Biomedical Investigations to help bridge neuroimaging data to other domains. Conclusion: MRIO addresses the need for a "common language" for MRI that can help manage the neuroimaging research, by enabling researchers to identify appropriate analyses for sets of scans and facilitating data organization and reporting.

4.
Database (Oxford) ; 20212021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34697637

RESUMEN

Biological ontologies are used to organize, curate and interpret the vast quantities of data arising from biological experiments. While this works well when using a single ontology, integrating multiple ontologies can be problematic, as they are developed independently, which can lead to incompatibilities. The Open Biological and Biomedical Ontologies (OBO) Foundry was created to address this by facilitating the development, harmonization, application and sharing of ontologies, guided by a set of overarching principles. One challenge in reaching these goals was that the OBO principles were not originally encoded in a precise fashion, and interpretation was subjective. Here, we show how we have addressed this by formally encoding the OBO principles as operational rules and implementing a suite of automated validation checks and a dashboard for objectively evaluating each ontology's compliance with each principle. This entailed a substantial effort to curate metadata across all ontologies and to coordinate with individual stakeholders. We have applied these checks across the full OBO suite of ontologies, revealing areas where individual ontologies require changes to conform to our principles. Our work demonstrates how a sizable, federated community can be organized and evaluated on objective criteria that help improve overall quality and interoperability, which is vital for the sustenance of the OBO project and towards the overall goals of making data Findable, Accessible, Interoperable, and Reusable (FAIR). Database URL http://obofoundry.org/.


Asunto(s)
Ontologías Biológicas , Bases de Datos Factuales , Metadatos
5.
J Biomed Semantics ; 11(1): 8, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32819435

RESUMEN

BACKGROUND: A key challenge for improving the quality of health care is to be able to use a common framework to work with patient information acquired in any of the health and life science disciplines. Patient information collected during dental care exposes many of the challenges that confront a wider scale approach. For example, to improve the quality of dental care, we must be able to collect and analyze data about dental procedures from multiple practices. However, a number of challenges make doing so difficult. First, dental electronic health record (EHR) information is often stored in complex relational databases that are poorly documented. Second, there is not a commonly accepted and implemented database schema for dental EHR systems. Third, integrative work that attempts to bridge dentistry and other settings in healthcare is made difficult by the disconnect between representations of medical information within dental and other disciplines' EHR systems. As dentistry increasingly concerns itself with the general health of a patient, for example in increased efforts to monitor heart health and systemic disease, the impact of this disconnect becomes more and more severe. To demonstrate how to address these problems, we have developed the open-source Oral Health and Disease Ontology (OHD) and our instance-based representation as a framework for dental and medical health care information. We envision a time when medical record systems use a common data back end that would make interoperating trivial and obviate the need for a dedicated messaging framework to move data between systems. The OHD is not yet complete. It includes enough to be useful and to demonstrate how it is constructed. We demonstrate its utility in an analysis of longevity of dental restorations. Our first narrow use case provides a prototype, and is intended demonstrate a prospective design for a principled data backend that can be used consistently and encompass both dental and medical information in a single framework. RESULTS: The OHD contains over 1900 classes and 59 relationships. Most of the classes and relationships were imported from existing OBO Foundry ontologies. Using the LSW2 (LISP Semantic Web) software library, we translated data from a dental practice's EHR system into a corresponding Web Ontology Language (OWL) representation based on the OHD framework. The OWL representation was then loaded into a triple store, and as a proof of concept, we addressed a question of clinical relevance - a survival analysis of the longevity of resin filling restorations. We provide queries using SPARQL and statistical analysis code in R to demonstrate how to perform clinical research using a framework such as the OHD, and we compare our results with previous studies. CONCLUSIONS: This proof-of-concept project translated data from a single practice. By using dental practice data, we demonstrate that the OHD and the instance-based approach are sufficient to represent data generated in real-world, routine clinical settings. While the OHD is applicable to integration of data from multiple practices with different dental EHR systems, we intend our work to be understood as a prospective design for EHR data storage that would simplify medical informatics. The system has well-understood semantics because of our use of BFO-based realist ontology and its representation in OWL. The data model is a well-defined web standard.


Asunto(s)
Ontologías Biológicas , Enfermedad , Registros Electrónicos de Salud , Salud Bucal
6.
J Biomed Inform ; 66: 129-135, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28003147

RESUMEN

Interoperability across data sets is a key challenge for quantitative histopathological imaging. There is a need for an ontology that can support effective merging of pathological image data with associated clinical and demographic data. To foster organized, cross-disciplinary, information-driven collaborations in the pathological imaging field, we propose to develop an ontology to represent imaging data and methods used in pathological imaging and analysis, and call it Quantitative Histopathological Imaging Ontology - QHIO. We apply QHIO to breast cancer hot-spot detection with the goal of enhancing reliability of detection by promoting the sharing of data between image analysts.


Asunto(s)
Ontologías Biológicas , Histología , Humanos , Patología , Reproducibilidad de los Resultados
7.
Nucleic Acids Res ; 45(D1): D339-D346, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27899649

RESUMEN

The Protein Ontology (PRO; http://purl.obolibrary.org/obo/pr) formally defines and describes taxon-specific and taxon-neutral protein-related entities in three major areas: proteins related by evolution; proteins produced from a given gene; and protein-containing complexes. PRO thus serves as a tool for referencing protein entities at any level of specificity. To enhance this ability, and to facilitate the comparison of such entities described in different resources, we developed a standardized representation of proteoforms using UniProtKB as a sequence reference and PSI-MOD as a post-translational modification reference. We illustrate its use in facilitating an alignment between PRO and Reactome protein entities. We also address issues of scalability, describing our first steps into the use of text mining to identify protein-related entities, the large-scale import of proteoform information from expert curated resources, and our ability to dynamically generate PRO terms. Web views for individual terms are now more informative about closely-related terms, including for example an interactive multiple sequence alignment. Finally, we describe recent improvement in semantic utility, with PRO now represented in OWL and as a SPARQL endpoint. These developments will further support the anticipated growth of PRO and facilitate discoverability of and allow aggregation of data relating to protein entities.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Proteínas , Animales , Humanos , Proteínas/química , Proteínas/genética , Navegador Web
8.
Nucleic Acids Res ; 45(D1): D347-D352, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27733503

RESUMEN

Linked Data (LD) aims to achieve interconnected data by representing entities using Unified Resource Identifiers (URIs), and sharing information using Resource Description Frameworks (RDFs) and HTTP. Ontologies, which logically represent entities and relations in specific domains, are the basis of LD. Ontobee (http://www.ontobee.org/) is a linked ontology data server that stores ontology information using RDF triple store technology and supports query, visualization and linkage of ontology terms. Ontobee is also the default linked data server for publishing and browsing biomedical ontologies in the Open Biological Ontology (OBO) Foundry (http://obofoundry.org) library. Ontobee currently hosts more than 180 ontologies (including 131 OBO Foundry Library ontologies) with over four million terms. Ontobee provides a user-friendly web interface for querying and visualizing the details and hierarchy of a specific ontology term. Using the eXtensible Stylesheet Language Transformation (XSLT) technology, Ontobee is able to dereference a single ontology term URI, and then output RDF/eXtensible Markup Language (XML) for computer processing or display the HTML information on a web browser for human users. Statistics and detailed information are generated and displayed for each ontology listed in Ontobee. In addition, a SPARQL web interface is provided for custom advanced SPARQL queries of one or multiple ontologies.


Asunto(s)
Ontologías Biológicas , Bases de Datos Factuales , Programas Informáticos , Navegador Web
9.
Int J Data Min Bioinform ; 15(3): 214-232, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27990175

RESUMEN

Identification of non-coding RNAs (ncRNAs) has been significantly improved over the past decade. On the other hand, semantic annotation of ncRNA data is facing critical challenges due to the lack of a comprehensive ontology to serve as common data elements and data exchange standards in the field. We developed the Non-Coding RNA Ontology (NCRO) to handle this situation. By providing a formally defined ncRNA controlled vocabulary, the NCRO aims to fill a specific and highly needed niche in semantic annotation of large amounts of ncRNA biological and clinical data.

10.
J Biomed Semantics ; 7(1): 44, 2016 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-27377652

RESUMEN

BACKGROUND: The Cell Ontology (CL) is an OBO Foundry candidate ontology covering the domain of canonical, natural biological cell types. Since its inception in 2005, the CL has undergone multiple rounds of revision and expansion, most notably in its representation of hematopoietic cells. For in vivo cells, the CL focuses on vertebrates but provides general classes that can be used for other metazoans, which can be subtyped in species-specific ontologies. CONSTRUCTION AND CONTENT: Recent work on the CL has focused on extending the representation of various cell types, and developing new modules in the CL itself, and in related ontologies in coordination with the CL. For example, the Kidney and Urinary Pathway Ontology was used as a template to populate the CL with additional cell types. In addition, subtypes of the class 'cell in vitro' have received improved definitions and labels to provide for modularity with the representation of cells in the Cell Line Ontology and Reagent Ontology. Recent changes in the ontology development methodology for CL include a switch from OBO to OWL for the primary encoding of the ontology, and an increasing reliance on logical definitions for improved reasoning. UTILITY AND DISCUSSION: The CL is now mandated as a metadata standard for large functional genomics and transcriptomics projects, and is used extensively for annotation, querying, and analyses of cell type specific data in sequencing consortia such as FANTOM5 and ENCODE, as well as for the NIAID ImmPort database and the Cell Image Library. The CL is also a vital component used in the modular construction of other biomedical ontologies-for example, the Gene Ontology and the cross-species anatomy ontology, Uberon, use CL to support the consistent representation of cell types across different levels of anatomical granularity, such as tissues and organs. CONCLUSIONS: The ongoing improvements to the CL make it a valuable resource to both the OBO Foundry community and the wider scientific community, and we continue to experience increased interest in the CL both among developers and within the user community.


Asunto(s)
Ontologías Biológicas , Células , Procesamiento de Lenguaje Natural , Sistema Nervioso/citología
11.
J Biomed Semantics ; 7: 24, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27152146

RESUMEN

In recent years, sequencing technologies have enabled the identification of a wide range of non-coding RNAs (ncRNAs). Unfortunately, annotation and integration of ncRNA data has lagged behind their identification. Given the large quantity of information being obtained in this area, there emerges an urgent need to integrate what is being discovered by a broad range of relevant communities. To this end, the Non-Coding RNA Ontology (NCRO) is being developed to provide a systematically structured and precisely defined controlled vocabulary for the domain of ncRNAs, thereby facilitating the discovery, curation, analysis, exchange, and reasoning of data about structures of ncRNAs, their molecular and cellular functions, and their impacts upon phenotypes. The goal of NCRO is to serve as a common resource for annotations of diverse research in a way that will significantly enhance integrative and comparative analysis of the myriad resources currently housed in disparate sources. It is our belief that the NCRO ontology can perform an important role in the comprehensive unification of ncRNA biology and, indeed, fill a critical gap in both the Open Biological and Biomedical Ontologies (OBO) Library and the National Center for Biomedical Ontology (NCBO) BioPortal. Our initial focus is on the ontological representation of small regulatory ncRNAs, which we see as the first step in providing a resource for the annotation of data about all forms of ncRNAs. The NCRO ontology is free and open to all users, accessible at: http://purl.obolibrary.org/obo/ncro.owl.


Asunto(s)
Ontologías Biológicas , ARN no Traducido , ARN no Traducido/genética , ARN no Traducido/metabolismo
12.
J Biomed Semantics ; 7: 25, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27175225

RESUMEN

As a special class of non-coding RNAs (ncRNAs), microRNAs (miRNAs) perform important roles in numerous biological and pathological processes. The realization of miRNA functions depends largely on how miRNAs regulate specific target genes. It is therefore critical to identify, analyze, and cross-reference miRNA-target interactions to better explore and delineate miRNA functions. Semantic technologies can help in this regard. We previously developed a miRNA domain-specific application ontology, Ontology for MIcroRNA Target (OMIT), whose goal was to serve as a foundation for semantic annotation, data integration, and semantic search in the miRNA field. In this paper we describe our continuing effort to develop the OMIT, and demonstrate its use within a semantic search system, OmniSearch, designed to facilitate knowledge capture of miRNA-target interaction data. Important changes in the current version OMIT are summarized as: (1) following a modularized ontology design (with 2559 terms imported from the NCRO ontology); (2) encoding all 1884 human miRNAs (vs. 300 in previous versions); and (3) setting up a GitHub project site along with an issue tracker for more effective community collaboration on the ontology development. The OMIT ontology is free and open to all users, accessible at: http://purl.obolibrary.org/obo/omit.owl. The OmniSearch system is also free and open to all users, accessible at: http://omnisearch.soc.southalabama.edu/index.php/Software.


Asunto(s)
Biología Computacional/métodos , Epistasis Genética/genética , Ontología de Genes , MicroARNs/genética , Semántica , Interfaz Usuario-Computador
13.
PLoS One ; 11(4): e0154556, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27128319

RESUMEN

The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed in association with OBI. The current release of OBI is available at http://purl.obolibrary.org/obo/obi.owl.


Asunto(s)
Ontologías Biológicas , Animales , Ontologías Biológicas/organización & administración , Ontologías Biológicas/estadística & datos numéricos , Ontologías Biológicas/tendencias , Biología Computacional , Bases de Datos Factuales , Humanos , Internet , Metadatos , Semántica , Programas Informáticos
15.
PLoS One ; 10(3): e0122978, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25894391

RESUMEN

The Protein Ontology (PRO) provides terms for and supports annotation of species-specific protein complexes in an ontology framework that relates them both to their components and to species-independent families of complexes. Comprehensive curation of experimentally known forms and annotations thereof is expected to expose discrepancies, differences, and gaps in our knowledge. We have annotated the early events of innate immune signaling mediated by Toll-Like Receptor 3 and 4 complexes in human, mouse, and chicken. The resulting ontology and annotation data set has allowed us to identify species-specific gaps in experimental data and possible functional differences between species, and to employ inferred structural and functional relationships to suggest plausible resolutions of these discrepancies and gaps.


Asunto(s)
Ontologías Biológicas , Biología Computacional/métodos , Transducción de Señal , Receptores Toll-Like/metabolismo , Animales , Pollos , Evolución Molecular , Humanos , Ratones , Anotación de Secuencia Molecular , Transporte de Proteínas
16.
Bioinformatics ; 31(8): 1337-9, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25481008

RESUMEN

MOTIVATION: Finding one or more cell populations of interest, such as those correlating to a specific disease, is critical when analysing flow cytometry data. However, labelling of cell populations is not well defined, making it difficult to integrate the output of algorithms to external knowledge sources. RESULTS: We developed flowCL, a software package that performs semantic labelling of cell populations based on their surface markers and applied it to labelling of the Federation of Clinical Immunology Societies Human Immunology Project Consortium lyoplate populations as a use case. CONCLUSION: By providing automated labelling of cell populations based on their immunophenotype, flowCL allows for unambiguous and reproducible identification of standardized cell types. AVAILABILITY AND IMPLEMENTATION: Code, R script and documentation are available under the Artistic 2.0 license through Bioconductor (http://www.bioconductor.org/packages/devel/bioc/html/flowCL.html). CONTACT: rbrinkman@bccrc.ca SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Fenómenos Fisiológicos Celulares , Citometría de Flujo/métodos , Ontología de Genes , Inmunofenotipificación/métodos , Programas Informáticos , Humanos , Antígenos Comunes de Leucocito/análisis , Receptores CCR7/análisis
17.
PLoS One ; 9(3): e92632, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24667848

RESUMEN

BACKGROUND: When increased rates of adverse events following immunization are detected, regulatory action can be taken by public health agencies. However to be interpreted reports of adverse events must be encoded in a consistent way. Regulatory agencies rely on guidelines to help determine the diagnosis of the adverse events. Manual application of these guidelines is expensive, time consuming, and open to logical errors. Representing these guidelines in a format amenable to automated processing can make this process more efficient. METHODS AND FINDINGS: Using the Brighton anaphylaxis case definition, we show that existing clinical guidelines used as standards in pharmacovigilance can be logically encoded using a formal representation such as the Adverse Event Reporting Ontology we developed. We validated the classification of vaccine adverse event reports using the ontology against existing rule-based systems and a manually curated subset of the Vaccine Adverse Event Reporting System. However, we encountered a number of critical issues in the formulation and application of the clinical guidelines. We report these issues and the steps being taken to address them in current surveillance systems, and in the terminological standards in use. CONCLUSIONS: By standardizing and improving the reporting process, we were able to automate diagnosis confirmation. By allowing medical experts to prioritize reports such a system can accelerate the identification of adverse reactions to vaccines and the response of regulatory agencies. This approach of combining ontology and semantic technologies can be used to improve other areas of vaccine adverse event reports analysis and should inform both the design of clinical guidelines and how they are used in the future. AVAILABILITY: Sufficient material to reproduce our results is available, including documentation, ontology, code and datasets, at http://purl.obolibrary.org/obo/aero.


Asunto(s)
Adhesión a Directriz , Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza/efectos adversos , Modelos Biológicos , Farmacovigilancia , Conjuntos de Datos como Asunto , Diagnóstico por Computador/métodos , Femenino , Guías como Asunto , Humanos , Vacunas contra la Influenza/administración & dosificación , Masculino , Valor Predictivo de las Pruebas
18.
Nucleic Acids Res ; 42(Database issue): D415-21, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24270789

RESUMEN

The Protein Ontology (PRO; http://proconsortium.org) formally defines protein entities and explicitly represents their major forms and interrelations. Protein entities represented in PRO corresponding to single amino acid chains are categorized by level of specificity into family, gene, sequence and modification metaclasses, and there is a separate metaclass for protein complexes. All metaclasses also have organism-specific derivatives. PRO complements established sequence databases such as UniProtKB, and interoperates with other biomedical and biological ontologies such as the Gene Ontology (GO). PRO relates to UniProtKB in that PRO's organism-specific classes of proteins encoded by a specific gene correspond to entities documented in UniProtKB entries. PRO relates to the GO in that PRO's representations of organism-specific protein complexes are subclasses of the organism-agnostic protein complex terms in the GO Cellular Component Ontology. The past few years have seen growth and changes to the PRO, as well as new points of access to the data and new applications of PRO in immunology and proteomics. Here we describe some of these developments.


Asunto(s)
Ontologías Biológicas , Bases de Datos de Proteínas , Proteínas/clasificación , Animales , Humanos , Internet , Ratones , Proteínas/química
19.
Artículo en Inglés | MEDLINE | ID: mdl-24303273

RESUMEN

A key question for healthcare is how to operationalize the vision of the Learning Healthcare System, in which electronic health record data become a continuous information source for quality assurance and research. This project presents an initial, ontology-based, method for secondary use of electronic dental record (EDR) data. We defined a set of dental clinical research questions; constructed the Oral Health and Disease Ontology (OHD); analyzed data from a commercial EDR database; and created a knowledge base, with the OHD used to represent clinical data about 4,500 patients from a single dental practice. Currently, the OHD includes 213 classes and reuses 1,658 classes from other ontologies. We have developed an initial set of SPARQL queries to allow extraction of data about patients, teeth, surfaces, restorations and findings. Further work will establish a complete, open and reproducible workflow for extracting and aggregating data from a variety of EDRs for research and quality assurance.

20.
J Biomed Semantics ; 4(1): 42, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24314207

RESUMEN

BACKGROUND: We are developing the Neurological Disease Ontology (ND) to provide a framework to enable representation of aspects of neurological diseases that are relevant to their treatment and study. ND is a representational tool that addresses the need for unambiguous annotation, storage, and retrieval of data associated with the treatment and study of neurological diseases. ND is being developed in compliance with the Open Biomedical Ontology Foundry principles and builds upon the paradigm established by the Ontology for General Medical Science (OGMS) for the representation of entities in the domain of disease and medical practice. Initial applications of ND will include the annotation and analysis of large data sets and patient records for Alzheimer's disease, multiple sclerosis, and stroke. DESCRIPTION: ND is implemented in OWL 2 and currently has more than 450 terms that refer to and describe various aspects of neurological diseases. ND directly imports the development version of OGMS, which uses BFO 2. Term development in ND has primarily extended the OGMS terms 'disease', 'diagnosis', 'disease course', and 'disorder'. We have imported and utilize over 700 classes from related ontology efforts including the Foundational Model of Anatomy, Ontology for Biomedical Investigations, and Protein Ontology. ND terms are annotated with ontology metadata such as a label (term name), term editors, textual definition, definition source, curation status, and alternative terms (synonyms). Many terms have logical definitions in addition to these annotations. Current development has focused on the establishment of the upper-level structure of the ND hierarchy, as well as on the representation of Alzheimer's disease, multiple sclerosis, and stroke. The ontology is available as a version-controlled file at http://code.google.com/p/neurological-disease-ontology along with a discussion list and an issue tracker. CONCLUSION: ND seeks to provide a formal foundation for the representation of clinical and research data pertaining to neurological diseases. ND will enable its users to connect data in a robust way with related data that is annotated using other terminologies and ontologies in the biomedical domain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA