Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunol Res ; 2024: 7484490, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455363

RESUMEN

Macrophages are the immune cells of high-immunological plasticity, which can exert both pro- and anti-inflammatory activity, as well as repolarize their phenotype to the opposite or neutral one. In this regard, M2 macrophages of the tumor-associated stroma (TAS) are a promising therapeutic target in treating malignant neoplasms. Using FACS assay, we have estimated the CD11b+/Ly-6G+/Ly-6C+ fraction of macrophages from the peritoneum and TAS in intact healthy mice and those with developed Lewis carcinoma, both untreated and treated according to Karanahan technology in combination with group-specific macrophage activator (GcMAF-RF). As well, the pattern of pro- and anti-inflammatory cytokines mRNA expression in different groups of experimental and tumor-bearing animals was assessed. It was found that: (i) exposure of intact mice to GcMAF-RF results in the increased number of CD11b+/Ly-6C+ peritoneal macrophages and, at the same time, the expression pattern of cytokines in peritoneal macrophages switches from that characteristic of the mixed M1/M2 phenotype to that characteristic of the neutral M0 one; (ii) combination of Karanahan technology and GcMAF-RF treatment results in M0/M1 repolarization of TAS macrophages; (iii) in tumor-bearing mice, the response of peritoneal macrophages to such a treatment is associated with the induction of anti-inflammatory reaction, which is opposite to that in TAS macrophages.


Asunto(s)
Factores Activadores de Macrófagos , Macrófagos , Neoplasias , Proteína de Unión a Vitamina D , Ratones , Animales , Macrófagos Peritoneales/metabolismo , Citocinas/metabolismo , Neoplasias/patología , Antiinflamatorios/metabolismo
2.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38139225

RESUMEN

Group-specific component macrophage-activating factor (GcMAF) is the vitamin D3-binding protein (DBP) deglycosylated at Thr420. The protein is believed to exhibit a wide range of therapeutic properties associated with the activation of macrophagal immunity. An original method for GcMAF production, DBP conversion to GcMAF, and the analysis of the activating potency of GcMAF was developed in this study. Data unveiling the molecular causes of macrophage activation were obtained. GcMAF was found to interact with three CLEC10A derivatives having molecular weights of 29 kDa, 63 kDa, and 65 kDa. GcMAF interacts with high-molecular-weight derivatives via Ca2+-dependent receptor engagement. Binding to the 65 kDa or 63 kDa derivative determines the pro- and anti-inflammatory direction of cytokine mRNA expression: 65 kDa-pro-inflammatory (TNF-α, IL-1ß) and 63 kDa-anti-inflammatory (TGF-ß, IL-10). No Ca2+ ions are required for the interaction with the canonical 29 kDa CLEC10A. Both forms, DBP protein and GcMAF, bind to the 29 kDa CLEC10A. This interaction is characterized by the stochastic mRNA synthesis of the analyzed cytokines. Ex vivo experiments have demonstrated that when there is an excess of GcMAF ligand, CLEC10A forms aggregate, and the mRNA synthesis of analyzed cytokines is inhibited. A schematic diagram of the presumable mechanism of interaction between the CLEC10A derivatives and GcMAF is provided. The principles and elements of standardizing the GcMAF preparation are elaborated.


Asunto(s)
Factores Activadores de Macrófagos , Macrófagos , Proteína de Unión a Vitamina D , Antiinflamatorios , Factores Activadores de Macrófagos/metabolismo , Macrófagos/metabolismo , ARN Mensajero , Humanos , Proteína de Unión a Vitamina D/metabolismo
3.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36902311

RESUMEN

It is well-established that double-stranded RNA (dsRNA) exhibits noticeable radioprotective and radiotherapeutic effects. The experiments conducted in this study directly demonstrated that dsRNA was delivered into the cell in its native form and that it induced hematopoietic progenitor proliferation. The 68 bp synthetic dsRNA labeled with 6-carboxyfluorescein (FAM) was internalized into mouse hematopoietic progenitors, c-Kit+ (a marker of long-term hematopoietic stem cells) cells and CD34+ (a marker of short-term hematopoietic stem cells and multipotent progenitors) cells. Treating bone marrow cells with dsRNA stimulated the growth of colonies, mainly cells of the granulocyte-macrophage lineage. A total of 0.8% of Krebs-2 cells internalized FAM-dsRNA and were simultaneously CD34+ cells. dsRNA in its native state was delivered into the cell, where it was present without any signs of processing. dsRNA binding to a cell was independent of cell charge. dsRNA internalization was related to the receptor-mediated process that requires energy from ATP. Synthetic dsRNA did not degrade in the bloodstream for at least 2 h. Hematopoietic precursors that had captured dsRNA reinfused into the bloodstream and populated the bone marrow and spleen. This study, for the first time, directly proved that synthetic dsRNA is internalized into a eukaryotic cell via a natural mechanism.


Asunto(s)
Células Madre Hematopoyéticas , ARN Bicatenario , Animales , Ratones , ARN Bicatenario/farmacología , Células Madre Hematopoyéticas/metabolismo , Médula Ósea/metabolismo , Antígenos CD34/metabolismo , Células de la Médula Ósea/metabolismo , Células Cultivadas
4.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36555446

RESUMEN

An ability of poorly differentiated cells of different genesis, including tumor stem-like cells (TSCs), to internalize extracellular double-stranded DNA (dsDNA) fragments was revealed in our studies. Using the models of Krebs-2 murine ascites carcinoma and EBV-induced human B-cell lymphoma culture, we demonstrated that dsDNA internalization into the cell consists of several mechanistically distinct phases. The primary contact with cell membrane factors is determined by electrostatic interactions. Firm contacts with cell envelope proteins are then formed, followed by internalization into the cell of the complex formed between the factor and the dsDNA probe bound to it. The key binding sites were found to be the heparin-binding domains, which are constituents of various cell surface proteins of TSCs-either the C1q domain, the collagen-binding domain, or domains of positively charged amino acids. These results imply that the interaction between extracellular dsDNA fragments and the cell, as well as their internalization, took place with the involvement of glycocalyx components (proteoglycans/glycoproteins (PGs/GPs) and glycosylphosphatidylinositol-anchored proteins (GPI-APs)) and the system of scavenger receptors (SRs), which are characteristic of TSCs and form functional clusters of cell surface proteins in TSCs. The key provisions of the concept characterizing the principle of organization of the "group-specific" cell surface factors of TSCs of various geneses were formulated. These factors belong to three protein clusters: GPs/PGs, GIP-APs, and SRs. For TSCs of different tumors, these clusters were found to be represented by different members with homotypic functions corresponding to the general function of the cluster to which they belong.


Asunto(s)
Carcinoma Krebs 2 , Células Madre Neoplásicas , Humanos , Animales , Ratones , Células Madre Neoplásicas/metabolismo , ADN/metabolismo , Glicoproteínas/metabolismo , Membrana Celular/metabolismo , Carcinoma Krebs 2/patología , Proteínas de la Membrana/metabolismo
5.
Front Genet ; 13: 954395, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159968

RESUMEN

Stem-like tumor cells of ascites carcinoma Krebs-2 and Epstein-Barr virus-induced B-lymphoma were shown to possess the innate capability of binding and internalizing the TAMRA-labeled double-stranded DNA (dsDNA) probe. The process of binding and internalizing is rather complicated and composed of the following successive stages: 1) initiating electrostatic interaction and contact of a negatively charged dsDNA molecule with a positively charged molecule(s) on the surface of a stem-like tumor cell; 2) binding of the dsDNA probe to a tumor stem cell surface protein(s) via the formation of a strong chemical/molecular bond; and 3) the very internalization of dsDNA into the cell. Binding of DNA to cell surface proteins is determined by the presence of heparin/polyanion-binding sites within the protein structure, which can be competitively blocked by heparin and/or dextran sulfate, wherein heparin blocks only the binding, while dextran sulfate abrogates both binding and internalization. The abrogation of internalization by dextran sulfate implies the role of scavenger receptors in this process. Cells were shown to uptake DNA in amounts constituting ∼0.008% of the haploid genome. Inhibitors of caveolae-dependent internalization abrogate the DNA uptake in Krebs-2 cells, and inhibitors of the clathrin/caveolar mechanism block the internalization in B-lymphoma cells. In the present report, it is shown for the first time that in contrast to the majority of committed tumor cells, stem-like tumor cells of Krebs-2 and B-lymphoma carry a general positive charge on their surface.

6.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35897653

RESUMEN

The main problem related to the studies focusing on group-specific component protein-derived macrophage-activating factor (GcMAF) is the lack of clarity about changes occurring in different types of macrophages and related changes in their properties under the effect of GcMAF in various clinical conditions. We analyzed the antitumor therapeutic properties of GcMAF in a Lewis carcinoma model in two clinical conditions: untreated tumor lesion and tumor resorption after exposure to Karanahan therapy. GcMAF is formed during site-specific deglycosylation of vitamin D3 binding protein (DBP). DBP was obtained from the blood of healthy donors using affinity chromatography on a column with covalently bound actin. GcMAF-related factor (GcMAF-RF) was converted in a mixture with induced lymphocytes through the cellular enzymatic pathway. The obtained GcMAF-RF activates murine peritoneal macrophages (p < 0.05), induces functional properties of dendritic cells (p < 0.05) and promotes in vitro polarization of human M0 macrophages to M1 macrophages (p < 0.01). Treatment of whole blood cells with GcMAF-RF results in active production of both pro- and anti-inflammatory cytokines. It is shown that macrophage activation by GcMAF-RF is inhibited by tumor-secreted factors. In order to identify the specific antitumor effect of GcMAF-RF-activated macrophages, an approach to primary reduction of humoral suppressor activity of the tumor using the Karanahan therapy followed by macrophage activation in the tumor-associated stroma (TAS) was proposed. A prominent additive effect of GcMAF-RF, which enhances the primary immune response activation by the Karanahan therapy, was shown in the model of murine Lewis carcinoma. Inhibition of the suppressive effect of TAS is the main condition required for the manifestation of the antitumor effect of GcMAF-RF. When properly applied in combination with any chemotherapy, significantly reducing the humoral immune response at the advanced tumor site, GcMAF-RF is a promising antitumor therapeutic agent that additively destroys the pro-tumor properties of macrophages of the tumor stroma.


Asunto(s)
Carcinoma , Factores Activadores de Macrófagos , Proteína de Unión a Vitamina D , Animales , Proteínas Sanguíneas/metabolismo , Carcinoma/tratamiento farmacológico , Humanos , Activación de Macrófagos , Factores Activadores de Macrófagos/metabolismo , Ratones , Proteína de Unión a Vitamina D/metabolismo
7.
Breast Cancer (Auckl) ; 16: 11782234211059931, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185333

RESUMEN

INTRODUCTION: Karanahan, a cancer treatment technology aimed at eradicating tumor-initiating stem cells, has already proven effective in 7 tumor models. Karanahan comprises the following procedures: (1) collecting surgical specimens, (2) determining the duration of the DNA repair process in tumor cells exposed to a cross-linking cytostatic agent, and (3) determining the time point, when cells, including tumor-initiating stem cells, are synchronized in the certain phase of the cell cycle after triple exposure to the cytostatic, becoming vulnerable for the terminal treatment, which is supposed to completely eliminate the rest of survived tumor-initiating stem cells. Determining these basic tumor properties allows to design the schedule for the administration of a cross-linking cytostatic and a complex composite DNA preparation. Being conducted in accordance with the schedule designed, Karanahan results in the large-scale apoptosis of tumor cells with elimination of tumor-initiating stem cells. METHODS: Breast tumor specimens were obtained from patients, and basic tumor properties essential for conducting Karanahan therapy were determined. RESULTS: We report the first use of Karanahan in patients diagnosed with breast cancer. Technical details of handling surgical specimens for determining the essential Karanahan parameters (tumor volume, cell number, cell proliferation status, etc) have been worked out. The terminally ill patient, who was undergoing palliative treatment and whose tumor specimen matched the required criteria, received a complete course of Karanahan. CONCLUSIONS: The results of the treatment conducted indicate that Karanahan technology has a therapeutic potency and can be used as a breast cancer treatment option.

8.
J Biomed Res ; 37(3): 194-212, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37161885

RESUMEN

To overcome immune tolerance to cancer, the immune system needs to be exposed to a multi-target action intervention. Here, we investigated the activating effect of CpG oligodeoxynucleotides (ODNs), mesyl phosphoramidate CpG ODNs, anti-OX40 antibodies, and OX40 RNA aptamers on major populations of immunocompetent cells ex vivo. Comparative analysis of the antitumor effects of in situ vaccination with CpG ODNs and anti-OX40 antibodies, as well as several other combinations, such as mesyl phosphoramidate CpG ODNs and OX40 RNA aptamers, was conducted. Antibodies against programmed death 1 (PD1) checkpoint inhibitors or their corresponding PD1 DNA aptamers were also added to vaccination regimens for analytical purposes. Four scenarios were considered: a weakly immunogenic Krebs-2 carcinoma grafted in CBA mice; a moderately immunogenic Lewis carcinoma grafted in C57Black/6 mice; and an immunogenic A20 B cell lymphoma or an Ehrlich carcinoma grafted in BALB/c mice. Adding anti-PD1 antibodies (CpG+αOX40+αPD1) to in situ vaccinations boosts the antitumor effect. When to be used instead of antibodies, aptamers also possess antitumor activity, although this effect was less pronounced. The strongest effect across all the tumors was observed in highly immunogenic A20 B cell lymphoma and Ehrlich carcinoma.

9.
Anticancer Res ; 41(7): 3371-3387, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34230133

RESUMEN

BACKGROUND/AIM: We compared the therapeutic efficacy of two recently developed experimental anticancer technologies: 1) in situ vaccination based on local immunotherapy with CpG oligonucleotides and anti-OX40 antibodies to activate antitumor immune response and 2) "Karanahan" technology [from the Sanskrit karana ('source') + han ('to kill')] based on the combined injection of cyclophosphamide and double-stranded DNA to eradicate cancer stem cells. MATERIALS AND METHODS: The anticancer approaches were compared on three types of mouse malignant tumors with different grades of immunogenicity: weakly immunogenic carcinoma Krebs-2, moderately immunogenic Lewis carcinoma, and highly immunogenic A20 В-cellular lymphoma. RESULTS: Our results indicated that in situ vaccination was the most effective against the highly immunogenic tumor А20. In addition, "Karanahan" demonstrated high efficiency in all types of tumors, regardless of their immunogenicity or size. CONCLUSION: "Karanahan" therapy showed higher efficacy relative to in situ vaccination with CpG oligonucleotides and anti-OX40 antibodies.


Asunto(s)
Antineoplásicos/inmunología , Inmunoterapia/métodos , Animales , Anticuerpos/inmunología , Antígenos de Diferenciación/inmunología , Antígenos de Neoplasias/inmunología , Carcinoma Pulmonar de Lewis/inmunología , Línea Celular Tumoral , Ciclofosfamida/inmunología , ADN/inmunología , Femenino , Linfoma/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Células Madre Neoplásicas/inmunología , Oligodesoxirribonucleótidos/inmunología , Receptores OX40/inmunología , Vacunación/métodos
10.
Transl Cancer Res ; 10(11): 4958-4972, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35116346

RESUMEN

OBJECTIVE: We describe experimental and theoretical premises of a powerful cancer therapy based on the combination of three approaches. These include (I) in situ vaccination (intratumoral injections of CpG oligonucleotides and anti-OX40 antibody); (II) chronometric or metronomic low-dose cyclophosphamide (CMLD CP)-based chemotherapy; (III) cancer stem cell-eradicating therapy referred to as Karanahan (from the Sanskrit karana ["source"] + han ["to kill"]). BACKGROUND: In murine models, the first two approaches are particularly potent in targeting immunogenic tumors for destruction. In situ vaccination activates a fully fledged anticancer immune response via an intricate network of ligand-receptor-cytokine interactions. CMLD CP-based chemotherapy primarily targets the suppressive tumor microenvironment and activates tumor-infiltrating effectors. In contrast, Karanahan technology, being aimed at replicative machinery of tumor cells (both stem-like and committed), does not depend on tumor immunogenicity. With this technology, mice engrafted with ascites and/or solid tumors can be successfully cured. There is a significant degree of mechanistic and therapeutic overlap between these three approaches. For instance, the similarities shared between in situ vaccination and Karanahan technology include the therapeutic procedure, the cell target [antigen-presenting cells (APC) and dendritic cells (DC)], and the use of DNA-based preparations (CpG and DNAmix). Features shared between CMLD CP-based chemotherapy and Karanahan technology are the timing and the dose of the cytostatic drug administration, which lead to tumor regression. METHODS: The following keywords were used to search PubMed for the latest research reporting successful eradication of transplantable cancers in animal models that relied on approaches distinct from those used in the Karanahan technology: eradication of malignancy, cure cancer, complete tumor regression, permanently eradicating advanced mouse tumor, metronomic chemotherapy, in situ vaccination, immunotherapy, and others. CONCLUSION: We hypothesize, therefore, that very potent anticancer activity can be achieved once these three therapeutic modalities are combined into a single approach. This multimodal approach is theoretically curative for any type of cancer that depends on the presence of tumor-inducing cancer stem cells, provided that the active therapeutic components are efficiently delivered into the tumor and the specific biological features of a given patient's tumor are properly addressed. We expect this multimodal approach to be primarily applicable to late-stage or terminal cancer patients who have exhausted all treatment options as well as patients with inoperable tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...