Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720437

RESUMEN

Noncoding RNAs (ncRNAs) are pivotal for various pathological processes, impacting disease progression. The potential for leveraging ncRNAs to prevent or treat atherosclerosis and associated cardiovascular diseases is of great significance, especially given the increasing prevalence of atherosclerosis in an ageing and sedentary population. Together, these diseases impose a substantial socio-economic burden, demanding innovative therapeutic solutions. This review explores the potential of ncRNAs in atherosclerosis treatment. We commence by examining approaches for identifying and characterizing atherosclerosis-associated ncRNAs. We then delve into the functional aspects of ncRNAs in atherosclerosis development and progression. Additionally, we review current RNA and RNA-targeting molecules in development or under approval for clinical use, offering insights into their pharmacological potential. The importance of improved ncRNA delivery strategies is highlighted. Finally, we suggest avenues for advanced research to accelerate the use of ncRNAs in treating atherosclerosis and mitigating its societal impact.

2.
Pharmaceutics ; 15(11)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-38004560

RESUMEN

Histone deacetylases (HDACs) are the major regulators of the balance of acetylation of histone and non-histone proteins. In contrast to other HDAC isoforms, HDAC6 is mainly involved in maintaining the acetylation balance of many non-histone proteins. Therefore, the overexpression of HDAC6 is associated with tumorigenesis, invasion, migration, survival, apoptosis and growth of various malignancies. As a result, HDAC6 is considered a promising target for cancer treatment. However, none of selective HDAC6 inhibitors are in clinical use, mainly because of the low efficacy and high concentrations used to show anticancer properties, which may lead to off-target effects. Therefore, HDAC6 inhibitors with dual-target capabilities represent a new trend in cancer treatment, aiming to overcome the above problems. In this review, we summarize the advances in tumor treatment with dual-target HDAC6 inhibitors.

3.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-37259439

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal malignancies. Development of the chemoresistance in the PDAC is one of the key contributors to the poor survival outcomes and the major reason for urgent development of novel pharmacological approaches in a treatment of PDAC. Systematically tailored combination therapy holds the promise for advancing the treatment of PDAC. However, the number of possible combinations of pharmacological agents is too large to be explored experimentally. In respect to the many epigenetic alterations in PDAC, epigenetic drugs including histone deacetylase inhibitors (HDACi) could be seen as the game changers especially in combined therapy settings. In this work, we explored a possibility of using drug-sensitivity data together with the basal gene expression of pancreatic cell lines to predict combinatorial options available for HDACi. Developed bioinformatics screening protocol for predictions of synergistic drug combinations in PDAC identified the sphingolipid signaling pathway with associated downstream effectors as a promising novel targets for future development of multi-target therapeutics or combined therapy with HDACi. Through the experimental validation, we have characterized novel synergism between HDACi and a Rho-associated protein kinase (ROCK) inhibitor RKI-1447, and between HDACi and a sphingosine 1-phosphate (S1P) receptor agonist fingolimod.

4.
Cancers (Basel) ; 14(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36497494

RESUMEN

Defects in epigenetic pathways are key drivers of oncogenic cell proliferation. We developed a LSD1/HDAC6 multitargeting inhibitor (iDual), a hydroxamic acid analogue of the clinical candidate LSD1 inhibitor GSK2879552. iDual inhibits both targets with IC50 values of 540, 110, and 290 nM, respectively, against LSD1, HDAC6, and HDAC8. We compared its activity to structurally similar control probes that act by HDAC or LSD1 inhibition alone, as well as an inactive null compound. iDual inhibited the growth of leukemia cell lines at a higher level than GSK2879552 with micromolar IC50 values. Dual engagement with LSD1 and HDAC6 was supported by dose dependent increases in substrate levels, biomarkers, and cellular thermal shift assay. Both histone methylation and acetylation of tubulin were increased, while acetylated histone levels were only mildly affected, indicating selectivity for HDAC6. Downstream gene expression (CD11b, CD86, p21) was also elevated in response to iDual treatment. Remarkably, iDual synergized with doxorubicin, triggering significant levels of apoptosis with a sublethal concentration of the drug. While mechanistic studies did not reveal changes in DNA repair or drug efflux pathways, the expression of AGPAT9, ALOX5, BTG1, HIPK2, IFI44L, and LRP1, previously implicated in doxorubicin sensitivity, was significantly elevated.

5.
Pharmaceutics ; 14(12)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36559094

RESUMEN

Isoform-selective histone deacetylase (HDAC) inhibition is promoted as a rational strategy to develop safer anti-cancer drugs compared to non-selective HDAC inhibitors. Despite this presumed benefit, considerably more non-selective HDAC inhibitors have undergone clinical trials. In this report, we detail the design and discovery of potent HDAC inhibitors, with 1-benzhydryl piperazine as a surface recognition group, that differ in hydrocarbon linker. In vitro HDAC screening identified two selective HDAC6 inhibitors with nanomolar IC50 values, as well as two non-selective nanomolar HDAC inhibitors. Structure-based molecular modeling was employed to study the influence of linker chemistry of synthesized inhibitors on HDAC6 potency. The breast cancer cell lines (MDA-MB-231 and MCF-7) were used to evaluate compound-mediated in vitro anti-cancer, anti-migratory, and anti-invasive activities. Experiments on the zebrafish MDA-MB-231 xenograft model revealed that a novel non-selective HDAC inhibitor with a seven-carbon-atom linker exhibits potent anti-tumor, anti-metastatic, and anti-angiogenic effects when tested at low micromolar concentrations.

6.
J Chem Inf Model ; 62(10): 2571-2585, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35467856

RESUMEN

Considerations of binding pocket dynamics are one of the crucial aspects of the rational design of binders. Identification of alternative conformational states or cryptic subpockets could lead to the discovery of completely novel groups of the ligands. However, experimental characterization of pocket dynamics, besides being expensive, may not be able to elucidate all of the conformational states relevant for drug discovery projects. In this study, we propose the protocol for computational simulations of sirtuin 2 (SIRT2) binding pocket dynamics and its integration into the structure-based virtual screening (SBVS) pipeline. Initially, unbiased molecular dynamics simulations of SIRT2:inhibitor complexes were performed using optimized force field parameters of SIRT2 inhibitors. Time-lagged independent component analysis (tICA) was used to design pocket-related collective variables (CVs) for enhanced sampling of SIRT2 pocket dynamics. Metadynamics simulations in the tICA eigenvector space revealed alternative conformational states of the SIRT2 binding pocket and the existence of a cryptic subpocket. Newly identified SIRT2 conformational states outperformed experimentally resolved states in retrospective SBVS validation. After performing prospective SBVS, compounds from the under-represented portions of the SIRT2 inhibitor chemical space were selected for in vitro evaluation. Two compounds, NDJ18 and NDJ85, were identified as potent and selective SIRT2 inhibitors, which validated the in silico protocol and opened up the possibility for generalization and broadening of its application. The anticancer effects of the most potent compound NDJ18 were examined on the triple-negative breast cancer cell line. Results indicated that NDJ18 represents a promising structure suitable for further evaluation.


Asunto(s)
Simulación de Dinámica Molecular , Sirtuina 2 , Ligandos , Estudios Prospectivos , Estudios Retrospectivos , Sirtuina 2/química
7.
Future Med Chem ; 14(8): 557-570, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35332778

RESUMEN

Background: Post-translational modifications of histones constitute a dynamic process impacting gene expression. A well-studied modification is lysine methylation. Among the lysine histone methyltransferases, DOT1L is implicated in various diseases, making it a very interesting target for drug discovery. DOT1L has two substrates, the SAM cofactor that gives the methyl group and the lysine H3K79 substrate. Results: Using molecular docking, the authors explored new bisubstrate analogs to enlarge the chemical landscape of DOT1L inhibitors. The authors showed that quinazoline can successfully replace the adenine in the design of bisubstrate inhibitors of DOT1L, showing similar activity compared with the adenine derivative but with diminished cytotoxicity. Conclusion: The docking model is validated together with the use of quinazoline in the design of bisubstrate inhibitors.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Leucemia , Adenina/farmacología , Antídotos , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Leucemia/metabolismo , Simulación del Acoplamiento Molecular , Quinazolinas/farmacología
8.
ACS Cent Sci ; 8(1): 57-66, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35106373

RESUMEN

Optical control has enabled functional modulation in cell culture with unparalleled spatiotemporal resolution. However, current tools for in vivo manipulation are scarce. Here, we design and implement a genuine on-off optochemical probe capable of achieving hematopoietic control in zebrafish. Our photopharmacological approach first developed conformationally strained visible light photoswitches (CS-VIPs) as inhibitors of the histone methyltransferase MLL1 (KMT2A). In blood homeostasis MLL1 plays a crucial yet controversial role. CS-VIP 8 optimally fulfils the requirements of a true bistable functional system in vivo under visible-light irradiation, and with unprecedented stability. These properties are exemplified via hematopoiesis photoinhibition with a single isomer in zebrafish. The present interdisciplinary study uncovers the mechanism of action of CS-VIPs. Upon WDR5 binding, CS-VIP 8 causes MLL1 release with concomitant allosteric rearrangements in the WDR5/RbBP5 interface. Since our tool provides on-demand reversible control without genetic intervention or continuous irradiation, it will foster hematopathology and epigenetic investigations. Furthermore, our workflow will enable exquisite photocontrol over other targets inhibited by macrocycles.

9.
Pharmaceutics ; 14(1)2022 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-35057104

RESUMEN

The dysregulation of gene expression is a critical event involved in all steps of tumorigenesis. Aberrant histone and non-histone acetylation modifications of gene expression due to the abnormal activation of histone deacetylases (HDAC) have been reported in hematologic and solid types of cancer. In this sense, the cancer-associated epigenetic alterations are promising targets for anticancer therapy and chemoprevention. HDAC inhibitors (HDACi) induce histone hyperacetylation within target proteins, altering cell cycle and proliferation, cell differentiation, and the regulation of cell death programs. Over the last three decades, an increasing number of synthetic and naturally derived compounds, such as dietary-derived products, have been demonstrated to act as HDACi and have provided biological and molecular insights with regard to the role of HDAC in cancer. The first part of this review is focused on the biological roles of the Zinc-dependent HDAC family in malignant diseases. Accordingly, the small-molecules and natural products such as HDACi are described in terms of cancer therapy and chemoprevention. Furthermore, structural considerations are included to improve the HDACi selectivity and combinatory potential with other specific targeting agents in bifunctional inhibitors and proteolysis targeting chimeras. Additionally, clinical trials that combine HDACi with current therapies are discussed, which may open new avenues in terms of the feasibility of HDACi's future clinical applications in precision cancer therapies.

10.
Molecules ; 26(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34500733

RESUMEN

Histone methyltransferase DOT1L catalyzes mono-, di- and trimethylation of histone 3 at lysine residue 79 (H3K79) and hypermethylation of H3K79 has been linked to the development of acute leukemias characterized by the MLL (mixed-lineage leukemia) rearrangements (MLLr cells). The inhibition of H3K79 methylation inhibits MLLr cells proliferation, and an inhibitor specific for DOT1L, pinometostat, was in clinical trials (Phase Ib/II). However, the compound showed poor pharmacological properties. Thus, there is a need to find new potent inhibitors of DOT1L for the treatment of rearranged leukemias. Here we present the design, synthesis, and biological evaluation of a small molecule that inhibits in the nM level the enzymatic activity of hDOT1L, H3K79 methylation in MLLr cells with comparable potency to pinometostat, associated with improved metabolic stability and a characteristic cytostatic effect.


Asunto(s)
Citostáticos/uso terapéutico , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Humanos , Leucemia/tratamiento farmacológico , Leucemia/metabolismo , Metilación/efectos de los fármacos , Estructura Molecular
11.
Methods Mol Biol ; 2266: 155-170, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33759126

RESUMEN

Medicinal chemistry society has enough arguments to justify the usage of fragment-based drug design (FBDD) methodologies for the identification of lead compounds. Since the FDA approval of three kinase inhibitors - vemurafenib, venetoclax, and erdafitinib, FBDD has become a challenging alternative to high-throughput screening methods in drug discovery. The following protocol presents in silico drug design of selective histone deacetylase 6 (HDAC6) inhibitors through a fragment-based approach. To date, structural motifs that are important for HDAC inhibitory activity and selectivity are described as: surface recognition group (CAP group), aliphatic or aromatic linker, and zinc-binding group (ZBG). The main idea of this FBDD method is to identify novel and target-selective CAP groups by virtual scanning of publicly available fragment databases. Template structure used to search for novel heterocyclic and carbocyclic fragments is 1,8-naphthalimide (CAP group of scriptaid, a potent HDAC inhibitor). Herein, the design of HDAC6 inhibitors is based on linking the identified fragments with the aliphatic or aromatic linker and hydroxamic acid (ZBG) moiety. Final selection of potential selective HDAC6 inhibitors is based on combined structure-based (molecular docking) and ligand-based (three-dimensional quantitative structure-activity relationships, 3D-QSAR) techniques. Designed compounds are docked in the active site pockets of human HDAC1 and HDAC6 isoforms, and their docking conformations used to predict their HDAC inhibitory and selectivity profiles through two developed 3D-QSAR models (describing HDAC1 and HDAC6 inhibitory activities).


Asunto(s)
Descubrimiento de Drogas/métodos , Histona Desacetilasa 6/química , Inhibidores de Histona Desacetilasas/química , Simulación del Acoplamiento Molecular/métodos , Naftalimidas/química , Secuencias de Aminoácidos , Dominio Catalítico , Bases de Datos de Compuestos Químicos , Diseño de Fármacos , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 1/química , Histona Desacetilasa 6/antagonistas & inhibidores , Técnicas In Vitro , Ligandos , Conformación Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad
12.
Mol Inform ; 40(5): e2000187, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33787066

RESUMEN

Considering the urgent need for novel therapeutics in ongoing COVID-19 pandemic, drug repurposing approach might offer rapid solutions comparing to de novo drug design. In this study, we designed an integrative in silico drug repurposing approach for rapid selection of potential candidates against SARS-CoV-2 Main Protease (Mpro ). To screen FDA-approved drugs, we implemented structure-based molecular modelling techniques, physiologically-based pharmacokinetic (PBPK) modelling of drugs disposition and data mining analysis of drug-gene-COVID-19 association. Through presented approach, we selected the most promising FDA approved drugs for further COVID-19 drug development campaigns and analysed them in context of available experimental data. To the best of our knowledge, this is unique in silico study which integrates structure-based molecular modeling of Mpro inhibitors with predictions of their tissue disposition, drug-gene-COVID-19 associations and prediction of pleiotropic effects of selected candidates.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos/métodos , Inhibidores de Proteasas/farmacología , SARS-CoV-2/enzimología , Proteínas de la Matriz Viral/antagonistas & inhibidores , Antivirales/química , Simulación por Computador , Diseño de Fármacos , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/química , SARS-CoV-2/efectos de los fármacos , Proteínas de la Matriz Viral/metabolismo
13.
J Biomol Struct Dyn ; 39(5): 1819-1837, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32141385

RESUMEN

A wide range of neuropsychological disorders is caused by serotonin 5-HT2A receptor (5-HT2AR) malfunction. Therefore, this receptor had been frequently used as target in CNS drug research. To design novel potent 5-HT2AR antagonists, we have combined ligand-based and target-based approaches. This study was performed on wide range of structurally diverse antagonists that were divided into three different clusters: clozapine, ziprasidone, and ChEMBL240876 derivatives. By performing the 50 ns long molecular dynamic simulations with each cluster representative in complex with 5-HT2A receptor, we have obtained virtually bioactive conformations of the ligands and three different antagonist-bound, inactive, conformations of the 5-HT2AR. These three 5-HT2AR conformations were further used for docking studies and generation of the bioactive conformations of the data set ligands in each cluster. Subsequently, selected conformers were used for 3D-Quantitative Structure Activity Relationship (3D-QSAR) modelling and pharmacophore analysis. The reliability and predictive power of the created model was assessed using an external test set compounds and showed reasonable external predictability. Statistically significant variables were used to define the most important structural features required for 5-HT2A antagonistic activity. Conclusions obtained from performed ligand-based (3D-QSAR) and target-based (molecular docking and molecular dynamics) methods were compiled and used as guidelines for rational drug design of novel 5-HT2AR antagonists.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Diseño de Fármacos , Serotonina , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa , Reproducibilidad de los Resultados
14.
J Biomol Struct Dyn ; 38(11): 3166-3177, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31382868

RESUMEN

The binding site of the second catalytic domain of human histone deacetylase 6 (HDAC6 CDII) has structural features that differ from the other human orthologues, being also mainly responsible for the overall enzymatic activity of this isoform. Aiming to identify new fragments as a possible novel selective zinc binding group (ZBG) for HDAC6 CDII, two fragment libraries were designed: one library consisting of known chelators and a second one using the fragments of the ZINC15 database. The most promising fragments identified in a structure-based virtual screening of designed libraries were further evaluated through molecular docking and molecular dynamics simulations. An interesting benzimidazole fragment was selected from the in silico studies and presented as potential zing binding group for the development of novel HDAC6 selective inhibitors.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Quelantes , Inhibidores de Histona Desacetilasas , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Simulación del Acoplamiento Molecular , Zinc
15.
ACS Med Chem Lett ; 10(6): 863-868, 2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31223439

RESUMEN

Dissymmetric cross metathesis of alkenes as a convergent and general synthetic strategy allowed for the preparation of a new small series of human histone deacetylases (HDAC) inhibitors. Alkenes bearing Boc-protected hydroxamic acid and benzamide and trityl-protected thiols were used to provide the zinc binding groups and were reacted with alkenes bearing aromatic cap groups. One compound was identified as a selective HDAC6 inhibitor lead. Additional biological evaluation in cancer cell lines demonstrated its ability to stimulate the expression of the epithelial marker E-cadherin and tumor suppressor genes like SEMA3F and p21, suggesting a potential use of this compound for lung cancer treatment. Molecular docking on all 11 HDAC isoforms was used to rationalize the observed biological results.

16.
Chembiochem ; 20(11): 1417-1429, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-30675988

RESUMEN

Life relies on a myriad of carefully orchestrated processes, in which proteins and their direct interplay ultimately determine cellular function and disease. Modulation of this complex crosstalk has recently attracted attention, even as a novel therapeutic strategy. Herein, we describe the synthesis and characterization of two visible-light-responsive peptide backbone photoswitches based on azobenzene derivatives, to exert optical control over protein-protein interactions (PPI). The novel peptidomimetics undergo fast and reversible isomerization with low photochemical fatigue under alternatively blue-/green-light irradiation cycles. Both bind in the nanomolar range to the protein of interest. Importantly, the best peptidomimetic displays a clear difference between isomers in its protein-binding capacity and, in turn, in its potential to inhibit enzymatic activity through PPI disruption. In addition, crystal structure determination, docking and molecular dynamics calculations allow a molecular interpretation and open up new avenues in the design and synthesis of future photoswitchable PPI modulators.


Asunto(s)
Compuestos Azo/química , Péptidos , Peptidomiméticos , Luz , Simulación de Dinámica Molecular , Péptidos/síntesis química , Péptidos/química , Peptidomiméticos/síntesis química , Peptidomiméticos/química , Procesos Fotoquímicos
17.
Mol Inform ; 38(5): e1800083, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30632697

RESUMEN

Histone deacetylase 6 (HDAC6) is unique hydrolase within HDAC family, having pleiotropic deacetylase activity against α-tubulin, cortactin and dynein. Comprehensively, HDAC6 controls cell motility, apoptosis and protein folding, whereas alterations in its structure and function are related to the pathogenesis of cancer, neurodegeneration and inflammation. To define structural motifs which guide HDAC6 selectivity, we developed and compared three-dimensional Quantitative Structure-Activity Relationship (3D-QSAR) models for HDAC1 and HDAC6 inhibitors. The reduction of the bias in conformer generation was supported by virtual docking study by using crystal structures of human HDAC1 and HDAC6 isoforms. Following these findings, the combined ligand-based and fragment-based drug design methodologies were used in the design of selective HDAC6 inhibitors. Group of the most promising novel ligands was selected based on the predicted HDAC6 selectivity, pharmacokinetic profile, synthetic tractability, and in silico cytotoxicity against the wide range of human cancer cell lines.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 6/metabolismo , Inhibidores de Histona Desacetilasas/química , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad Cuantitativa
18.
Front Chem ; 7: 873, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31970149

RESUMEN

Rational drug design implies usage of molecular modeling techniques such as pharmacophore modeling, molecular dynamics, virtual screening, and molecular docking to explain the activity of biomolecules, define molecular determinants for interaction with the drug target, and design more efficient drug candidates. Kinases play an essential role in cell function and therefore are extensively studied targets in drug design and discovery. Kinase inhibitors are clinically very important and widely used antineoplastic drugs. In this review, computational methods used in rational drug design of kinase inhibitors are discussed and compared, considering some representative case studies.

19.
J Pharm Biomed Anal ; 127: 101-11, 2016 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26968888

RESUMEN

The retention behaviour of 22 selected imidazoline drugs and derivatives was investigated on α1-acid glycoprotein (AGP) column using Sørensen phosphate buffer (pH 7.0) and 2-propanol as organic modifier. Quantitative Structure-Retention Relationships (QSRR) models were built using extrapolated logkw values as well as isocratic retention factors (logk5, logk8, logk10, logk12, logk15 obtained for 5%, 8%, 10%, 12%, and 15%, of 2-propanol in mobile phase, respectively) as dependant variables and calculated physicochemical parameters as independant variables. The established QSRR models were built by stepwise multiple linear regression (MLR) and partial least squares regression (PLS). The performance of the stepwise and PLS models was tested by cross-validation and the external test set prediction. The validated QSRR models were compared and the optimal PLS-QSRR model for logkw and each isocratic retention factors (PLS-QSRR(logk5), PLS-QSRR(logk8), PLS-QSRR(logk10), MLR-QSRR(logk12), MLR-QSRR(logk15)) were selected. The QSRR results were further confirmed by Linear Solvation Energy Relationships (LSER). LSER analysis indicated on hydrogen bond basicity, McGowan volume and excess molar refraction as the most significant parameters for all AGP chromatographic retention factors and logkw values of 22 selected imidazoline drugs and derivatives.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Imidazolinas/química , Modelos Químicos , Orosomucoide/química , Preparaciones Farmacéuticas/química , Relación Estructura-Actividad Cuantitativa , 2-Propanol/química , Modelos Lineales , Estructura Molecular , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...