Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 384(6698): eadg5136, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781388

RESUMEN

The complexity and heterogeneity of schizophrenia have hindered mechanistic elucidation and the development of more effective therapies. Here, we performed single-cell dissection of schizophrenia-associated transcriptomic changes in the human prefrontal cortex across 140 individuals in two independent cohorts. Excitatory neurons were the most affected cell group, with transcriptional changes converging on neurodevelopment and synapse-related molecular pathways. Transcriptional alterations included known genetic risk factors, suggesting convergence of rare and common genomic variants on neuronal population-specific alterations in schizophrenia. Based on the magnitude of schizophrenia-associated transcriptional change, we identified two populations of individuals with schizophrenia marked by expression of specific excitatory and inhibitory neuronal cell states. This single-cell atlas links transcriptomic changes to etiological genetic risk factors, contextualizing established knowledge within the human cortical cytoarchitecture and facilitating mechanistic understanding of schizophrenia pathophysiology and heterogeneity.


Asunto(s)
Predisposición Genética a la Enfermedad , Neuroglía , Neuronas , Corteza Prefrontal , Esquizofrenia , Análisis de la Célula Individual , Adulto , Femenino , Humanos , Masculino , Estudios de Cohortes , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Factores de Riesgo , Esquizofrenia/genética , Sinapsis/metabolismo , Transcriptoma , Adulto Joven , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Neuroglía/metabolismo
2.
Cell Genom ; 3(10): 100404, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37868037

RESUMEN

Genome-wide association studies (GWASs) have successfully identified 145 genomic regions that contribute to schizophrenia risk, but linkage disequilibrium makes it challenging to discern causal variants. We performed a massively parallel reporter assay (MPRA) on 5,173 fine-mapped schizophrenia GWAS variants in primary human neural progenitors and identified 439 variants with allelic regulatory effects (MPRA-positive variants). Transcription factor binding had modest predictive power, while fine-map posterior probability, enhancer overlap, and evolutionary conservation failed to predict MPRA-positive variants. Furthermore, 64% of MPRA-positive variants did not exhibit expressive quantitative trait loci signature, suggesting that MPRA could identify yet unexplored variants with regulatory potentials. To predict the combinatorial effect of MPRA-positive variants on gene regulation, we propose an accessibility-by-contact model that combines MPRA-measured allelic activity with neuronal chromatin architecture.

4.
Hum Mol Genet ; 27(2): 254-265, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29106556

RESUMEN

Recent studies describe distinct DNA methylomes among phenotypic subclasses of neurons in the human brain, but variation in DNA methylation between common neuronal phenotypes distinguished by their function within distinct neural circuits remains an unexplored concept. Studies able to resolve epigenetic profiles at the level of microcircuits are needed to illuminate chromatin dynamics in the regulation of specific neuronal populations and circuits mediating normal and abnormal behaviors. The Illumina HumanMethylation450 BeadChip was used to assess genome-wide DNA methylation in stratum oriens GABAergic interneurons sampled by laser-microdissection from two discrete microcircuits along the trisynaptic pathway in postmortem human hippocampus from eight control, eight schizophrenia, and eight bipolar disorder subjects. Data were analysed using the minfi Bioconductor package in R software version 3.3.2. We identified 11 highly significant differentially methylated regions associated with a group of genes with high construct-validity, including multiple zinc finger of the cerebellum gene family members and WNT signaling factors. Genomic locations of differentially methylated regions were highly similar between diagnostic categories, with a greater number of differentially methylated individual cytosine residues between circuit locations in bipolar disorder cases than in schizophrenia or control (42, 7, and 7 differentially methylated positions, respectively). These findings identify distinct DNA methylomes among phenotypically similar populations of GABAergic interneurons functioning within separate hippocampal subfields. These data compliment recent studies describing diverse epigenotypes among separate neuronal subclasses, extending this concept to distinct epigenotypes within similar neuronal phenotypes from separate microcircuits within the human brain.


Asunto(s)
Trastorno Bipolar/genética , Neuronas GABAérgicas/fisiología , Esquizofrenia/genética , Anciano , Anciano de 80 o más Años , Trastorno Bipolar/fisiopatología , Encéfalo/metabolismo , Cerebelo/metabolismo , Islas de CpG , Metilación de ADN , Epigénesis Genética/genética , Femenino , Genoma , Hipocampo , Humanos , Interneuronas/metabolismo , Masculino , Persona de Mediana Edad , Neuronas/metabolismo , Esquizofrenia/fisiopatología , Transducción de Señal , Lóbulo Temporal/metabolismo
5.
Genes (Basel) ; 8(5)2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28505127

RESUMEN

Identification of 108 genomic regions significantly associated with schizophrenia risk by the Psychiatric Genomics Consortium was a milestone for the field, and much work is now focused on determining the mechanism of risk associated with each locus. Within these regions, we investigated variability of DNA methylation, a low-level cellular phenotype closely linked to genotype, in two highly similar cellular populations sampled from the human hippocampus, to draw inferences about the elaboration of genotype to phenotype within these loci enriched for schizophrenia risk. DNA methylation was assessed with the Illumina HumanMethylation450 BeadArray in tissue laser-microdissected from the stratum oriens of subfield CA1 or CA2/3, regions having unique connectivity with intrinsic and extrinsic fiber systems within the hippocampus. Samples consisted of postmortem human hippocampus tissue from eight schizophrenia patients, eight bipolar disorder patients, and eight healthy control subjects. Within these genomic regions, we observed far greater difference in methylation patterns between circuit locations within subjects than in a single subregion between subjects across diagnostic groups, demonstrating the complexity of genotype to phenotype elaboration across the diverse circuitry of the human brain.

6.
Cereb Cortex ; 27(11): 5284-5293, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27733539

RESUMEN

GABAergic dysfunction in hippocampus, a key feature of schizophrenia (SZ), may contribute to cognitive impairment in this disorder. In stratum oriens (SO) of sector CA3/2 of the human hippocampus, a network of genes involved in the regulation of glutamic acid decarboxylase GAD67 has been identified. Several of the genes in this network including epigenetic factors histone deacetylase 1 (HDAC1) and death-associated protein 6 (DAXX), the GABAergic enzyme GAD65 as well as the kainate receptor (KAR) subunits GluR6 and 7 show significant changes in expression in this area in SZ. We have tested whether HDAC1 and DAXX regulate GAD67, GAD65, or GluR in the intact rodent hippocampus. Stereotaxic injections of lentiviral vectors bearing shRNAi sequences for HDAC1 and DAXX were delivered into the SO of CA3/2, followed by laser microdissection of individual transduced GABA neurons. Quantitative PCR (QPCR) analyses demonstrated that inhibition of HDAC1 and DAXX increased expression of GAD67, GAD65, and GluR6 mRNA. Inhibition of DAXX, but not HDAC1 resulted in a significant increase in GluR7 mRNA. Our data support the hypothesis that HDAC1 and DAXX play a central role in coordinating the expression of genes in the GAD67 regulatory pathway in the SO of CA3/2.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Región CA2 Hipocampal/metabolismo , Región CA3 Hipocampal/metabolismo , Epigénesis Genética , Glutamato Descarboxilasa/metabolismo , Histona Desacetilasa 1/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Animales , Región CA2 Hipocampal/citología , Región CA3 Hipocampal/citología , Línea Celular , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Histona Desacetilasa 1/antagonistas & inhibidores , Masculino , Chaperonas Moleculares , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Receptores de Glutamato/metabolismo
7.
Harv Rev Psychiatry ; 23(3): 212-22, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25943315

RESUMEN

Epigenetics is the study of chromatin-the physical material that forms chromosomes, composed of DNA wound around specialized histone proteins-and of how the modification of chromatin acts to establish stable states of gene expression in a cell-specific manner. Chromatin is regulated through three mechanisms: DNA methylation, histone modification, and RNA interference. These basic biological processes form the molecular interface between the genome and the environment, contributing to the regulation of gene expression in health and disease. Investigation of epigenetic mechanisms is yielding exciting insights in many areas of medicine, and a large and rapidly growing literature describes epigenetics as central to many aspects of the pathophysiology of psychotic disorders. This article first discusses speculative points as to why the mechanisms of epigenetics may be satisfying explanatory mechanisms in the etiology of psychotic disorders, then details emerging experimental evidence of roles for the three types of epigenetic mechanisms in these illnesses, and finally discusses these mechanisms as potentially compelling areas of research for the development of future treatments.


Asunto(s)
Encéfalo/fisiopatología , Epigénesis Genética , Interacción Gen-Ambiente , Trastornos Psicóticos/genética , Humanos , Trastornos del Humor/genética , Plasticidad Neuronal/genética
8.
JAMA Psychiatry ; 72(6): 541-51, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25738424

RESUMEN

IMPORTANCE: Dysfunction related to γ-aminobutyric acid (GABA)-ergic neurotransmission in the pathophysiology of major psychosis has been well established by the work of multiple groups across several decades, including the widely replicated downregulation of GAD1. Prior gene expression and network analyses within the human hippocampus implicate a broader network of genes, termed the GAD1 regulatory network, in regulation of GAD1 expression. Several genes within this GAD1 regulatory network show diagnosis- and sector-specific expression changes within the circuitry of the hippocampus, influencing abnormal GAD1 expression in schizophrenia and bipolar disorder. OBJECTIVE: To investigate the hypothesis that aberrant DNA methylation contributes to circuit- and diagnosis-specific abnormal expression of GAD1 regulatory network genes in psychotic illness. DESIGN, SETTING, AND PARTICIPANTS: This epigenetic association study targeting GAD1 regulatory network genes was conducted between July 1, 2012, and June 30, 2014. Postmortem human hippocampus tissue samples were obtained from 8 patients with schizophrenia, 8 patients with bipolar disorder, and 8 healthy control participants matched for age, sex, postmortem interval, and other potential confounds from the Harvard Brain Tissue Resource Center, McLean Hospital, Belmont, Massachusetts. We extracted DNA from laser-microdissected stratum oriens tissue of cornu ammonis 2/3 (CA2/3) and CA1 postmortem human hippocampus, bisulfite modified it, and assessed it with the Infinium HumanMethylation450 BeadChip (Illumina, Inc). The subset of CpG loci associated with GAD1 regulatory network genes was analyzed in R version 3.1.0 software (R Foundation) using the minfi package. Findings were validated using bisulfite pyrosequencing. MAIN OUTCOMES AND MEASURES: Methylation levels at 1308 GAD1 regulatory network-associated CpG loci were assessed both as individual sites to identify differentially methylated positions and by sharing information among colocalized probes to identify differentially methylated regions. RESULTS: A total of 146 differentially methylated positions with a false detection rate lower than 0.05 were identified across all 6 groups (2 circuit locations in each of 3 diagnostic categories), and 54 differentially methylated regions with P < .01 were identified in single-group comparisons. Methylation changes were enriched in MSX1, CCND2, and DAXX at specific loci within the hippocampus of patients with schizophrenia and bipolar disorder. CONCLUSIONS AND RELEVANCE: This work demonstrates diagnosis- and circuit-specific DNA methylation changes at a subset of GAD1 regulatory network genes in the human hippocampus in schizophrenia and bipolar disorder. These genes participate in chromatin regulation and cell cycle control, supporting the concept that the established GABAergic dysfunction in these disorders is related to disruption of GABAergic interneuron physiology at specific circuit locations within the human hippocampus.


Asunto(s)
Trastorno Bipolar/metabolismo , Metilación de ADN , Glutamato Descarboxilasa/metabolismo , Hipocampo/metabolismo , Esquizofrenia/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Trastorno Bipolar/genética , Estudios de Casos y Controles , Proteínas Co-Represoras , Islas de CpG/genética , Ciclina D2/metabolismo , Estudios de Asociación Genética , Humanos , Factor de Transcripción MSX1/metabolismo , Chaperonas Moleculares , Proteínas Nucleares/metabolismo , Esquizofrenia/genética , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...