Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Viruses ; 16(5)2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38793540

RESUMEN

Recombinant adenoviruses are widely used in clinical and laboratory applications. Despite the wide variety of available sero- and genotypes, only a fraction is utilized in vivo. As adenoviruses are a large group of viruses, displaying many different tropisms, immune epitopes, and replication characteristics, the merits of translating these natural benefits into vector applications are apparent. This translation, however, proves difficult, since while research has investigated the application of these viruses, there are no universally applicable rules in vector design for non-classical adenovirus types. In this paper, we describe a generalized workflow that allows vectorization, rescue, and cloning of all adenoviral species to enable the rapid development of new vector variants. We show this using human and simian adenoviruses, further modifying a selection of them to investigate their gene transfer potential and build potential vector candidates for future applications.


Asunto(s)
Vectores Genéticos , Recombinación Genética , Vectores Genéticos/genética , Humanos , Adenoviridae/genética , Adenovirus Humanos/genética , Animales , Técnicas de Transferencia de Gen , Adenovirus de los Simios/genética , Clonación Molecular/métodos
2.
Mol Ther Oncol ; 32(1): 200784, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38596296

RESUMEN

Viruses are able to efficiently penetrate cells, multiply, and eventually kill infected cells, release tumor antigens, and activate the immune system. Therefore, viruses are highly attractive novel agents for cancer therapy. Clinical trials with first generations of oncolytic viruses (OVs) are very promising but show significant need for optimization. The aim of TheraVision was to establish a broadly applicable engineering platform technology for combinatorial oncolytic virus and immunotherapy. Through genetic engineering, an attenuated herpes simplex virus type 1 (HSV1) was generated that showed increased safety compared to the wild-type strain. To demonstrate the modularity and the facilitated generation of new OVs, two transgenes encoding retargeting as well as immunomodulating single-chain variable fragments (scFvs) were integrated into the platform vector. The resulting virus selectively infected epidermal growth factor receptor (EGFR)-expressing cells and produced a functional immune checkpoint inhibitor against programmed cell death protein 1 (PD-1). Thus, both viral-mediated oncolysis and immune-cell-mediated therapy were combined into a single viral vector. Safety and functionality of the armed OVs have been shown in novel preclinical models ranging from patient-derived organoids and tissue-engineered human in vitro 3D tumor models to complex humanized mouse models. Consequently, a novel and proprietary engineering platform vector based on HSV1 is available for the facilitated preclinical development of oncolytic virotherapy.

3.
Mol Ther Methods Clin Dev ; 32(2): 101241, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38585687

RESUMEN

While recombinant adenoviruses (rAds) are widely used in both laboratory and medical gene transfer, library-based applications using this vector platform are not readily available. Recently, we developed a new method, the CRISPR-Cas9 mediated in vivo terminal resolution aiding high-efficiency rescue of rAds from recombinant DNA. Here we report on a genetic workflow that allows construction of bacterial artificial chromosome-based rAd libraries reconstituted using highly efficient terminal resolution. We utilized frequent, pre-existing genomic sequences to allow the insertion of a selection marker, complementing two selected target sites into novel endonuclease recognition sites. In the second step, this selection marker is replaced with a transgene or mutation of interest via Gibson assembly. Our approach does not cause unwanted genomic off-target mutations while providing substantial flexibility for the site and nature of the genetic modification. This new genetic workflow, which we termed half site-directed fragment replacement (HFR) allows the introduction of more than 106 unique modifications into rAd encoding BACs using laboratory scale methodology. To demonstrate the power of HFR, we rescued barcoded viral vector libraries yielding a diversity of approximately 2.5 × 104 unique rAds per cm2 of transfected cell culture.

4.
J Innate Immun ; 16(1): 226-247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38527452

RESUMEN

INTRODUCTION: While TLR ligands derived from microbial flora and pathogens are important activators of the innate immune system, a variety of factors such as intracellular bacteria, viruses, and parasites can induce a state of hyperreactivity, causing a dysregulated and potentially life-threatening cytokine over-response upon TLR ligand exposure. Type I interferon (IFN-αß) is a central mediator in the induction of hypersensitivity and is strongly expressed in splenic conventional dendritic cells (cDC) and marginal zone macrophages (MZM) when mice are infected with adenovirus. This study investigates the ability of adenoviral infection to influence the activation state of the immune system and underlines the importance of considering this state when planning the treatment of patients. METHODS: Infection with adenovirus-based vectors (Ad) or pretreatment with recombinant IFN-ß was used as a model to study hypersensitivity to lipopolysaccharide (LPS) in mice, murine macrophages, and human blood samples. The TNF-α, IL-6, IFN-αß, and IL-10 responses induced by LPS after pretreatment were measured. Mouse knockout models for MARCO, IFN-αßR, CD14, IRF3, and IRF7 were used to probe the mechanisms of the hypersensitive reaction. RESULTS: We show that, similar to TNF-α and IL-6 but not IL-10, the induction of IFN-αß by LPS increases strongly after Ad infection. This is true both in mice and in human blood samples ex vivo, suggesting that the regulatory mechanisms seen in the mouse are also present in humans. In mice, the scavenger receptor MARCO on IFN-αß-producing cDC and splenic marginal zone macrophages is important for Ad uptake and subsequent cytokine overproduction by LPS. Interestingly, not all IFN-αß-pretreated macrophage types exposed to LPS exhibit an enhanced TNF-α and IL-6 response. Pretreated alveolar macrophages and alveolar macrophage-like murine cell lines (MPI cells) show enhanced responses, while bone marrow-derived and peritoneal macrophages show a weaker response. This correlates with the respective absence or presence of the anti-inflammatory IL-10 response in these different macrophage types. In contrast, Ad or IFN-ß pretreatment enhances the subsequent induction of IFN-αß in all macrophage types. IRF3 is dispensable for the LPS-induced IFN-αß overproduction in infected MPI cells and partly dispensable in infected mice, while IRF7 is required. The expression of the LPS co-receptor CD14 is important but not absolutely required for the elicitation of a TNF-α over-response to LPS in Ad-infected mice. CONCLUSION: Viral infections or application of virus-based vaccines induces type I interferon and can tip the balance of the innate immune system in the direction of hyperreactivity to a subsequent exposure to TLR ligands. The adenoviral model presented here is one example of how multiple factors, both environmental and genetic, affect the physiological responses to pathogens. Being able to measure the current reactivity state of the immune system would have important benefits for infection-specific therapies and for the prevention of vaccination-elicited adverse effects.


Asunto(s)
Adenoviridae , Citocinas , Factor 3 Regulador del Interferón , Lipopolisacáridos , Macrófagos , Ratones Noqueados , Animales , Ratones , Lipopolisacáridos/inmunología , Humanos , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Macrófagos/inmunología , Citocinas/metabolismo , Ratones Endogámicos C57BL , Factor 7 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/genética , Vectores Genéticos , Infecciones por Adenoviridae/inmunología , Interferón Tipo I/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Células Cultivadas , Células Dendríticas/inmunología , Interferón beta/metabolismo
5.
Cell Rep ; 43(3): 113800, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38386559

RESUMEN

Infection of mice by mouse cytomegalovirus (MCMV) triggers activation and expansion of Ly49H+ natural killer (NK) cells, which are virus specific and considered to be "adaptive" or "memory" NK cells. Here, we find that signaling lymphocytic activation molecule family receptors (SFRs), a group of hematopoietic cell-restricted receptors, are essential for the expansion of Ly49H+ NK cells after MCMV infection. This activity is largely mediated by CD48, an SFR broadly expressed on NK cells and displaying augmented expression after MCMV infection. It is also dependent on the CD48 counter-receptor, 2B4, expressed on host macrophages. The 2B4-CD48 axis promotes expansion of Ly49H+ NK cells by repressing their phagocytosis by virus-activated macrophages through inhibition of the pro-phagocytic integrin lymphocyte function-associated antigen-1 (LFA-1) on macrophages. These data identify key roles of macrophages and the 2B4-CD48 pathway in controlling the expansion of adaptive NK cells following MCMV infection. Stimulation of the 2B4-CD48 axis may be helpful in enhancing adaptive NK cell responses for therapeutic purposes.


Asunto(s)
Infecciones por Citomegalovirus , Receptores Inmunológicos , Animales , Ratones , Receptores Inmunológicos/metabolismo , Antígeno CD48/metabolismo , Antígenos CD/metabolismo , Activación de Linfocitos , Células Asesinas Naturales , Receptores de Superficie Celular/metabolismo , Proteínas Portadoras/metabolismo , Macrófagos/metabolismo , Fagocitosis
6.
Nat Commun ; 14(1): 2721, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37169749

RESUMEN

While the precise processes underlying a sex bias in the development of central nervous system (CNS) disorders are unknown, there is growing evidence that an early life immune activation can contribute to the disease pathogenesis. When we mimicked an early systemic viral infection or applied murine cytomegalovirus (MCMV) systemically in neonatal female and male mice, only male adolescent mice presented behavioral deficits, including reduced social behavior and cognition. This was paralleled by an increased amount of infiltrating T cells in the brain parenchyma, enhanced interferon-γ (IFNγ) signaling, and epigenetic reprogramming of microglial cells. These microglial cells showed increased phagocytic activity, which resulted in abnormal loss of excitatory synapses within the hippocampal brain region. None of these alterations were seen in female adolescent mice. Our findings underscore the early postnatal period's susceptibility to cause sex-dependent long-term CNS deficiencies following infections.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Microglía , Animales , Femenino , Masculino , Ratones , Microglía/patología , Encéfalo , Enfermedades del Sistema Nervioso Central/patología , Interferón gamma/genética , Epigénesis Genética
7.
Viruses ; 15(3)2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36992475

RESUMEN

Extensive reorganization of infected cells and the formation of large structures known as the nuclear replication compartment (RC) and cytoplasmic assembly compartment (AC) is a hallmark of beta-herpesvirus infection. These restructurings rely on extensive compartmentalization of the processes that make up the virus manufacturing chain. Compartmentalization of the nuclear processes during murine cytomegalovirus (MCMV) infection is not well described. In this study, we visualized five viral proteins (pIE1, pE1, pM25, pm48.2, and pM57) and replicated viral DNA to reveal the nuclear events during MCMV infection. As expected, these events can be matched with those described for other beta and alpha herpesviruses and contribute to the overall picture of herpesvirus assembly. Imaging showed that four viral proteins (pE1, pM25, pm48.2, and pM57) and replicated viral DNA condense in the nucleus into membraneless assemblies (MLAs) that undergo a maturation sequence to form the RC. One of these proteins (pM25), which is also expressed in a cytoplasmic form (pM25l), showed similar MLAs in the AC. Bioinformatics tools for predicting biomolecular condensates showed that four of the five proteins had a high propensity for liquid-liquid phase separation (LLPS), suggesting that LLPS may be a mechanism for compartmentalization within RC and AC. Examination of the physical properties of MLAs formed during the early phase of infection by 1,6-hexanediol treatment in vivo revealed liquid-like properties of pE1 MLAs and more solid-like properties of pM25 MLAs, indicating heterogeneity of mechanisms in the formation of virus-induced MLAs. Analysis of the five viral proteins and replicated viral DNA shows that the maturation sequence of RC and AC is not completed in many cells, suggesting that virus production and release is carried out by a rather limited number of cells. This study thus lays the groundwork for further investigation of the replication cycle of beta-herpesviruses, and the results should be incorporated into plans for high-throughput and single-cell analytic approaches.


Asunto(s)
Infecciones por Citomegalovirus , Muromegalovirus , Virus , Animales , Ratones , Muromegalovirus/metabolismo , ADN Viral/genética , Núcleo Celular/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virus/metabolismo
8.
Front Microbiol ; 13: 854690, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35369433

RESUMEN

Recombinant adenovirus (rAd) vectors represent one of the most frequently used vehicles for gene transfer applications in vitro and in vivo. rAd genomes are constructed in Escherichia coli where their genomes can be maintained, propagated, and modified in form of circular plasmids or bacterial artificial chromosomes. Although the rescue of rAds from their circular plasmid or bacmid forms is well established, it works with relatively low primary efficiency, preventing this technology for library applications. To overcome this barrier, we tested a novel strategy for the reconstitution of rAds that utilizes the CRISPR/Cas-machinery to cleave the circular rAd genomes in close proximity to their inverted terminal repeats (ITRs) within the producer cells upon transfection. This CRISPR/Cas-mediated in vivo terminal resolution allowed efficient rescue of vectors derived from different human adenovirus (HAdV) species. By this means, it was not only possible to increase the efficiency of virus rescue by about 50-fold, but the presented methodology appeared also remarkably simpler and faster than traditional rAd reconstitution methods.

9.
Mol Ther Oncolytics ; 24: 230-248, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35071746

RESUMEN

Ad5-delta-24-RGD is currently the most clinically advanced recombinant adenovirus (rAd) for glioma therapy. We constructed a panel of fiber-modified rAds (Ad5RGD, Ad5/3, Ad5/35, Ad5/3RGD, and Ad5/35RGD, all harboring the delta-24 modification) and compared their infectivity, replication, reproduction, and cytolytic efficacy in human and rodent glioma cell lines and short-term cultures from primary gliomas. In human cells, both Ad5/35-delta-24 and Ad5/3-delta-24 displayed superior infectivity and cytolytic efficacy over Ad5-delta-24-RGD, while Ad5/3-delta-24-RGD and Ad5/35-delta-24-RGD did not show further improvements in efficacy. The expression of the adenoviral receptors/coreceptors CAR, DSG2, and CD46 and the integrins αVß3/αVß5 did not predict the relative cytolytic efficacy of the fiber-modified rAds. The cytotoxicity of the fiber-modified rAds in human primary normal cultures of different origins and in primary glioma cultures was comparable, indicating that the delta-24 modification did not confer tumor cell selectivity. We also revealed that CT-2A and GL261 glioma cells might be used as murine cell models for the fiber chimeric rAds in vitro and in vivo. In GL261 tumor-bearing mice, Ad5/35-delta-24, armed with the immune costimulator OX40L as the E2A/DBP-p2A-mOX40L fusion, produced long-term survivors, which were able to reject tumor cells upon rechallenge. Our data underscore the potential of local Ad5/35-delta-24-based immunovirotherapy for glioblastoma treatment.

10.
Cell ; 184(14): 3774-3793.e25, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34115982

RESUMEN

Cytomegaloviruses (CMVs) have co-evolved with their mammalian hosts for millions of years, leading to remarkable host specificity and high infection prevalence. Macrophages, which already populate barrier tissues in the embryo, are the predominant immune cells at potential CMV entry sites. Here we show that, upon CMV infection, macrophages undergo a morphological, immunophenotypic, and metabolic transformation process with features of stemness, altered migration, enhanced invasiveness, and provision of the cell cycle machinery for viral proliferation. This complex process depends on Wnt signaling and the transcription factor ZEB1. In pulmonary infection, mouse CMV primarily targets and reprograms alveolar macrophages, which alters lung physiology and facilitates primary CMV and secondary bacterial infection by attenuating the inflammatory response. Thus, CMV profoundly perturbs macrophage identity beyond established limits of plasticity and rewires specific differentiation processes, allowing viral spread and impairing innate tissue immunity.


Asunto(s)
Citomegalovirus/fisiología , Macrófagos Alveolares/virología , Animales , Presentación de Antígeno , Efecto Espectador , Ciclo Celular , Línea Celular Transformada , Reprogramación Celular , Citomegalovirus/patogenicidad , Citomegalovirus/ultraestructura , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Proteínas Fluorescentes Verdes/metabolismo , Pulmón/patología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/ultraestructura , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fenotipo , Células Madre/patología , Replicación Viral/fisiología , Vía de Señalización Wnt
11.
Viruses ; 12(12)2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-33291455

RESUMEN

The ongoing pandemic spread of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) demands skillful strategies for novel drug development, drug repurposing and cotreatments, in particular focusing on existing candidates of host-directed antivirals (HDAs). The developmental drug IMU-838, currently being investigated in a phase 2b trial in patients suffering from autoimmune diseases, represents an inhibitor of human dihydroorotate dehydrogenase (DHODH) with a recently proven antiviral activity in vitro and in vivo. Here, we established an analysis system for assessing the antiviral potency of IMU-838 and DHODH-directed back-up drugs in cultured cell-based infection models. By the use of SARS-CoV-2-specific immunofluorescence, Western blot, in-cell ELISA, viral yield reduction and RT-qPCR methods, we demonstrated the following: (i) IMU-838 and back-ups show anti-SARS-CoV-2 activity at several levels of viral replication, i.e., protein production, double-strand RNA synthesis, and release of infectious virus; (ii) antiviral efficacy in Vero cells was demonstrated in a micromolar range (IMU-838 half-maximal effective concentration, EC50, of 7.6 ± 5.8 µM); (iii) anti-SARS-CoV-2 activity was distinct from cytotoxic effects (half-cytotoxic concentration, CC50, >100 µM); (iv) the drug in vitro potency was confirmed using several Vero lineages and human cells; (v) combination with remdesivir showed enhanced anti-SARS-CoV-2 activity; (vi) vidofludimus, the active determinant of IMU-838, exerted a broad-spectrum activity against a selection of major human pathogenic viruses. These findings strongly suggest that developmental DHODH inhibitors represent promising candidates for use as anti-SARS-CoV-2 therapeutics.


Asunto(s)
Antivirales/farmacología , Reposicionamiento de Medicamentos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Animales , Antivirales/química , Chlorocebus aethiops , Ensayos Clínicos Fase II como Asunto , Dihidroorotato Deshidrogenasa , Descubrimiento de Drogas , Sinergismo Farmacológico , Humanos , Células Vero , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
12.
Front Microbiol ; 11: 601555, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33281801

RESUMEN

Viral infections are a global disease burden with only a limited number of antiviral agents available. Due to newly emerging viral pathogens and increasing occurrence of drug resistance, there is a continuous need for additional therapeutic options, preferably with extended target range. In the present study, we describe a novel antiviral peptide with broad activity against several double-stranded DNA viruses. The 22-mer peptide TAT-I24 potently neutralized viruses such as herpes simplex viruses, adenovirus type 5, cytomegalovirus, vaccinia virus, and simian virus 40 in cell culture models, while being less active against RNA viruses. The peptide TAT-I24 therefore represents a novel and promising drug candidate for use against double-stranded DNA viruses.

13.
Plasmid ; 111: 102531, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32920019

RESUMEN

Engineering bacterial genomes or foreign DNA cloned as bacterial artificial chromosomes (BACs) relies on usage of helper plasmids, which deliver the desired tools transiently into the bacteria to be modified. After the anticipated action is completed the helper plasmids need to be cured. To make this efficient, plasmids are used that are maintained by conditional amplicons or carry a counter-selection marker. Here, we describe new conditional plasmids that can be maintained or cured by using chemical induction or repression. Our method is based on the dependency of plasmids carrying ori6Kγ origin of replication on the presence of protein Π. Ori6Kγ based plasmids are tightly regulated conditional constructs, but they require usually special E. coli strains to operate. To avoid this, we placed the Π protein expression under the control of a co-expressed conditional repressor. Regulating the maintenance of plasmids with administration or removal of chemicals is fully compatible with any other conditional amplicons applied to date. Here, we describe methods for inducing sites specific recombination of BACs as an example. However, the same strategy might be used to construct appropriate helper plasmids for any other transient components of genome editing methodologies such as λred recombinases or CRISPR/Cas components.


Asunto(s)
Escherichia coli/genética , Ingeniería Genética , Plásmidos/genética , Cromosomas Artificiales Bacterianos , Cromosomas Bacterianos , Replicación del ADN , Edición Génica , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Recombinación Genética , Temperatura
14.
Front Immunol ; 11: 1627, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849551

RESUMEN

Dendritic cells (DC) play a key role in the adaptive immune response due to their ability to present antigens and stimulate naïve T cells. Many bacteria and viruses can efficiently target DC, resulting in impairment of their immunostimulatory function or elimination. Hence, the DC compartment requires replenishment following infection to ensure continued operational readiness of the adaptive immune system. Here, we investigated the molecular and cellular mechanisms of inflammation-induced DC generation. We found that infection with viral and bacterial pathogens as well as Toll-like receptor 9 (TLR9) ligation with CpG-oligodeoxynucleotide (CpG-ODN) expanded an erythropoietin (EPO)-dependent TER119+CD11a+ cell population in the spleen that had the capacity to differentiate into TER119+CD11chigh and TER119-CD11chigh cells both in vitro and in vivo. TER119+CD11chigh cells contributed to the conventional DC pool in the spleen and specifically increased in lymph nodes draining the site of local inflammation. Our results reveal a so far undescribed inflammatory EPO-dependent pathway of DC differentiation and establish a mechanistic link between innate immune recognition of potential immunosuppressive pathogens and the maintenance of the DC pool during and after infection.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Eritropoyetina/metabolismo , Inmunidad Innata , Infecciones/etiología , Infecciones/metabolismo , Animales , Biomarcadores , Antígenos de Grupos Sanguíneos/genética , Antígenos de Grupos Sanguíneos/metabolismo , Antígeno CD11c/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Citocinas/metabolismo , Células Dendríticas/efectos de los fármacos , Modelos Animales de Enfermedad , Eritropoyetina/farmacología , Femenino , Hematopoyesis Extramedular/efectos de los fármacos , Hematopoyesis Extramedular/inmunología , Inmunofenotipificación , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Transgénicos , Oligodesoxirribonucleótidos/farmacología , Bazo/inmunología , Bazo/metabolismo , Bazo/patología
15.
Front Immunol ; 11: 793, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477336

RESUMEN

Starting at birth, newborn infants are exposed to numerous microorganisms. Adaptation of the innate immune system to them is a delicate process, with potentially advantageous and harmful implications for health development. Cytomegaloviruses (CMVs) are highly adapted to their specific mammalian hosts, with which they share millions of years of co-evolution. Throughout the history of mankind, human CMV has infected most infants in the first months of life without overt implications for health. Thus, CMV infections are intertwined with normal immune development. Nonetheless, CMV has retained substantial pathogenicity following infection in utero or in situations of immunosuppression, leading to pathology in virtually any organ and particularly the central nervous system (CNS). CMVs enter the host through mucosal interfaces of the gastrointestinal and respiratory tract, where macrophages (MACs) are the most abundant immune cell type. Tissue MACs and their potential progenitors, monocytes, are established target cells of CMVs. Recently, several discoveries have revolutionized our understanding on the pre- and postnatal development and site-specific adaptation of tissue MACs. In this review, we explore experimental evidences and concepts on how CMV infections may impact on MAC development and activation as part of host-virus co-adaptation.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Inmunidad Innata , Inmunidad Mucosa , Macrófagos/inmunología , Animales , Infecciones por Citomegalovirus/virología , Adaptación al Huésped/inmunología , Humanos , Inmunomodulación , Lactante , Recién Nacido , Ratones , Monocitos/inmunología
16.
Nat Commun ; 10(1): 2830, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31249303

RESUMEN

Cytomegalovirus is a DNA-encoded ß-herpesvirus that induces STING-dependent type 1 interferon responses in macrophages and uses myeloid cells as a vehicle for dissemination. Here we report that STING knockout mice are as resistant to murine cytomegalovirus (MCMV) infection as wild-type controls, whereas mice with a combined Toll-like receptor/RIG-I-like receptor/STING signaling deficiency do not mount type 1 interferon responses and succumb to the infection. Although STING alone is dispensable for survival, early IFN-ß induction in Kupffer cells is STING-dependent and controls early hepatic virus propagation. Infection experiments with an inducible reporter MCMV show that STING constrains MCMV replication in myeloid cells and limits viral dissemination via these cells. By contrast, restriction of viral dissemination from hepatocytes to other organs is independent of STING. Thus, during MCMV infection STING is involved in early IFN-ß induction in Kupffer cells and the restriction of viral dissemination via myeloid cells, whereas it is dispensable for survival.


Asunto(s)
Infecciones por Herpesviridae/veterinaria , Interferón beta/metabolismo , Hígado/metabolismo , Proteínas de la Membrana/metabolismo , Muromegalovirus/fisiología , Células Mieloides/metabolismo , Enfermedades de los Roedores/metabolismo , Animales , Femenino , Hepatocitos/metabolismo , Hepatocitos/virología , Infecciones por Herpesviridae/virología , Interacciones Huésped-Patógeno , Interferón beta/genética , Macrófagos del Hígado/metabolismo , Macrófagos del Hígado/virología , Hígado/virología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Muromegalovirus/genética , Células Mieloides/virología , Enfermedades de los Roedores/genética , Enfermedades de los Roedores/virología , Transducción de Señal , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
17.
Nat Commun ; 10(1): 1645, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30948711

RESUMEN

The original version of this Article contained an error in the Acknowledgements, which incorrectly omitted the following: 'C.C., C.A., and J.C.H. were supported by the Fundação Calouste Gulbenkian through a grant from the Instituto Gulbenkian de Ciência and by the research infrastructure Congento, project LISBOA-01-0145-FEDER-022170, co-financed by Lisboa Regional Operational Programme (Lisboa 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and Foundation for Science and Technology (Portugal).' This has been corrected in both the PDF and HTML versions of the Article.

18.
Nat Commun ; 10(1): 1233, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30874554

RESUMEN

Some strains of the protozoan parasite Toxoplasma gondii (such as RH) are virulent in laboratory mice because they are not restricted by the Immunity-Related GTPase (IRG) resistance system in these mouse strains. In some wild-derived Eurasian mice (such as CIM) on the other hand, polymorphic IRG proteins inhibit the replication of such virulent T. gondii strains. Here we show that this resistance is due to direct binding of the IRG protein Irgb2-b1CIM to the T. gondii virulence effector ROP5 isoform B. The Irgb2-b1 interface of this interaction is highly polymorphic and under positive selection. South American T. gondii strains are virulent even in wild-derived Eurasian mice. We were able to demonstrate that this difference in virulence is due to polymorphic ROP5 isoforms that are not targeted by Irgb2-b1CIM, indicating co-adaptation of host cell resistance GTPases and T. gondii virulence effectors.


Asunto(s)
GTP Fosfohidrolasas/inmunología , Interacciones Huésped-Parásitos/inmunología , Proteínas Protozoarias/inmunología , Toxoplasma/patogenicidad , Toxoplasmosis Animal/inmunología , Animales , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Femenino , Fibroblastos , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Células HEK293 , Interacciones Huésped-Parásitos/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Isoformas de Proteínas , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Selección Genética/inmunología , Toxoplasma/inmunología , Toxoplasmosis Animal/parasitología , Virulencia/inmunología
19.
Traffic ; 20(2): 152-167, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30548142

RESUMEN

Morphogenesis of herpesviral virions is initiated in the nucleus but completed in the cytoplasm. Mature virions contain more than 25 tegument proteins many of which perform both nuclear and cytoplasmic functions suggesting they shuttle between these compartments. While nuclear import of herpesviral proteins was shown to be crucial for viral propagation, active nuclear export and its functional impact are still poorly understood. To systematically analyze nuclear export of tegument proteins present in virions of Herpes simplex virus type 1 (HSV1) and Epstein-Barr virus (EBV), the Nuclear EXport Trapped by RAPamycin (NEX-TRAP) was applied. Nine of the 22 investigated HSV1 tegument proteins including pUL4, pUL7, pUL11, pUL13, pUL21, pUL37d11, pUL47, pUL48 and pUS2 as well as 2 out of 6 EBV orthologs harbor nuclear export activity. A functional leucine-rich nuclear export sequence (NES) recognized by the export factor CRM1/Xpo1 was identified in six of them. The comparison between experimental and bioinformatic data indicates that experimental validation of predicted NESs is required. Mutational analysis of the pUL48/VP16 NES revealed its importance for herpesviral propagation. Together our data suggest that nuclear export is an important feature of the herpesviral life cycle required to co-ordinate nuclear and cytoplasmic processes.


Asunto(s)
Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 4/metabolismo , Señales de Exportación Nuclear , Proteínas de la Matriz Viral/química , Animales , Chlorocebus aethiops , Células HeLa , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 4/fisiología , Humanos , Células Vero , Proteínas de la Matriz Viral/metabolismo , Replicación Viral
20.
Vaccine ; 36(41): 6212-6222, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30190120

RESUMEN

The human adenovirus type 19a/64 (hAd19a) is a rare serotype in the human population that transduces human dendritic cells (DCs) and human muscle cells more efficiently than the well-characterized human adenovirus type 5 (hAd5). To further characterize the potential of this vector as a vaccine we designed replication deficient hAd19a, hAd5 and MVA vectors expressing a papillomavirus (PV) antigen fused to the human MHC class II associated invariant chain T cell adjuvant (hIi) and investigated their immunogenicity in vivo in mice and cynomolgus macaques. We initially showed that the hIi encoded in the hAd5 enhanced PV specific CD8+ T cell responses in mice. The T cell responses induced after hAd19a vaccination was similar to those induced by hAd5 vaccination. The hAd19a induced responses were not reduced in presence of preexisting Ad5 immunity in mice. In macaques both vaccines were equally potent at inducing CD8+ T cells after MVA boost, while the level of CD4+ T cell responses were found to be broader in hAd19a primed animals. These data demonstrate the potential of hAd19a as an alternative vector to hAd5 to elicit potent T cell responses to PV.


Asunto(s)
Adenovirus Humanos/genética , Adenovirus Humanos/inmunología , Animales , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Femenino , Vectores Genéticos , Humanos , Macaca fascicularis , Ratones , Vacunas contra Papillomavirus/genética , Serogrupo , Vacunación/efectos adversos , Vacunación/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...