Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Drug Deliv Rev ; 208: 115275, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38442747

RESUMEN

Ultrasound is a promising technology to address challenges in drug delivery, including limited drug penetration across physiological barriers and ineffective targeting. Here we provide an overview of the significant advances made in recent years in overcoming technical and pharmacological barriers using ultrasound-assisted drug delivery to the central and peripheral nervous system. We commence by exploring the fundamental principles of ultrasound physics and its interaction with tissue. The mechanisms of ultrasonic-enhanced drug delivery are examined, as well as the relevant tissue barriers. We highlight drug transport through such tissue barriers utilizing insonation alone, in combination with ultrasound contrast agents (e.g., microbubbles), and through innovative particulate drug delivery systems. Furthermore, we review advances in systems and devices for providing therapeutic ultrasound, as their practicality and accessibility are crucial for clinical application.


Asunto(s)
Sistemas de Liberación de Medicamentos , Terapia por Ultrasonido , Humanos , Ultrasonografía , Sistema Nervioso Periférico , Microburbujas
2.
Langmuir ; 39(29): 10033-10046, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37433143

RESUMEN

Waterborne polyurethane (WPU) has attracted significant interest as a promising alternative to solvent-based polyurethane (SPU) due to its positive impact on safety and sustainability. However, significant limitations of WPU, such as its weaker mechanical strength, limit its ability to replace SPU. Triblock amphiphilic diols are promising materials to enhance the performance of WPU due to their well-defined hydrophobic-hydrophilic structures. Yet, our understanding of the relationship between the hydrophobic-hydrophilic arrangements of triblock amphiphilic diols and the physical properties of WPU remains limited. In this study, we show that by controlling the micellar structure of WPU in aqueous solution via the introduction of triblock amphiphilic diols, the postcuring efficiency and the resulting mechanical strength of WPU can be significantly enhanced. Small-angle neutron scattering confirmed the microstructure and spatial distribution of hydrophilic and hydrophobic segments in the engineered WPU micelles. In addition, we show that the control of the WPU micellar structure through triblock amphiphilic diols renders WPU attractive in the applications of controlled release, such as drug delivery. Here, curcumin was used as a model hydrophobic drug, and the drug release behavior from WPU-micellar-based drug delivery systems was characterized. It was found that curcumin-loaded WPU drug delivery systems were highly biocompatible and exhibited antibacterial properties in vitro. Furthermore, the sustained release profile of the drug was found to be dependent on the structure of the triblock amphiphilic diols, suggesting the possibility of controlling the drug release profile via the selection of triblock amphiphilic diols. This work shows that by shedding light on the structure-property relationship of triblock amphiphilic diol-containing WPU micelles, we may enhance the applicability of WPU systems and move closer to realizing their promising potential in real-life applications.

3.
Sci Adv ; 9(6): eadf5509, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36753543

RESUMEN

Endotoxin is a deadly pyrogen, rendering it crucial to monitor with high accuracy and efficiency. However, current endotoxin detection relies on multistep processes that are labor-intensive, time-consuming, and unsustainable. Here, we report an aptamer-based biosensor for the real-time optical detection of endotoxin. The endotoxin sensor exploits the distance-dependent scattering of gold nanoparticles (AuNPs) coupled to a gold nanofilm. This is enabled by the conformational changes of an endotoxin-specific aptamer upon target binding. The sensor can be used in an ensemble mode and single-particle mode under dark-field illumination. In the ensemble mode, the sensor is coupled with a microspectrometer and exhibits high specificity, reliability (i.e., linear concentration to signal profile in logarithmic scale), and reusability for repeated endotoxin measurements. Individual endotoxins can be detected by monitoring the color of single AuNPs via a color camera, achieving single-molecule resolution. This platform can potentially advance endotoxin detection to safeguard medical, food, and pharmaceutical products.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Endotoxinas , Oro/química , Reproducibilidad de los Resultados , Aptámeros de Nucleótidos/química , Nanopartículas del Metal/química , Límite de Detección
4.
Science ; 376(6596): 1006-1012, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35617386

RESUMEN

Temporary postoperative cardiac pacing requires devices with percutaneous leads and external wired power and control systems. This hardware introduces risks for infection, limitations on patient mobility, and requirements for surgical extraction procedures. Bioresorbable pacemakers mitigate some of these disadvantages, but they demand pairing with external, wired systems and secondary mechanisms for control. We present a transient closed-loop system that combines a time-synchronized, wireless network of skin-integrated devices with an advanced bioresorbable pacemaker to control cardiac rhythms, track cardiopulmonary status, provide multihaptic feedback, and enable transient operation with minimal patient burden. The result provides a range of autonomous, rate-adaptive cardiac pacing capabilities, as demonstrated in rat, canine, and human heart studies. This work establishes an engineering framework for closed-loop temporary electrotherapy using wirelessly linked, body-integrated bioelectronic devices.


Asunto(s)
Implantes Absorbibles , Estimulación Cardíaca Artificial , Marcapaso Artificial , Cuidados Posoperatorios , Tecnología Inalámbrica , Animales , Perros , Frecuencia Cardíaca , Humanos , Cuidados Posoperatorios/instrumentación , Ratas
5.
J Reconstr Microsurg ; 38(2): 96-105, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34404105

RESUMEN

BACKGROUND: Current near-infrared spectroscopy (NIRS)-based systems for continuous flap monitoring are highly sensitive for detecting malperfusion. However, the clinical utility and user experience are limited by the wired connection between the sensor and bedside console. This wire leads to instability of the flap-sensor interface and may cause false alarms. METHODS: We present a novel wearable wireless NIRS sensor for continuous fasciocutaneous free flap monitoring. This waterproof silicone-encapsulated Bluetooth-enabled device contains two light-emitting diodes and two photodetectors in addition to a battery sufficient for 5 days of uninterrupted function. This novel device was compared with a ViOptix T.Ox monitor in a porcine rectus abdominus myocutaneous flap model of arterial and venous occlusions. RESULTS: Devices were tested in four flaps using three animals. Both devices produced very similar tissue oxygen saturation (StO2) tracings throughout the vascular clamping events, with obvious and parallel changes occurring on arterial clamping, arterial release, venous clamping, and venous release. Small interdevice variations in absolute StO2 value readings and magnitude of change were observed. The normalized cross-correlation at zero lag describing correspondence between the novel NIRS and T.Ox devices was >0.99 in each trial. CONCLUSION: The wireless NIRS flap monitor is capable of detecting StO2 changes resultant from arterial vascular occlusive events. In this porcine flap model, the functionality of this novel sensor closely mirrored that of the T.Ox wired platform. This device is waterproof, highly adhesive, skin conforming, and has sufficient battery life to function for 5 days. Clinical testing is necessary to determine if this wireless functionality translates into fewer false-positive alarms and a better user experience.


Asunto(s)
Colgajos Tisulares Libres , Colgajo Miocutáneo , Animales , Monitoreo Fisiológico , Oxígeno , Espectroscopía Infrarroja Corta , Porcinos , Venas
6.
Nat Biomed Eng ; 5(9): 1099-1109, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34518656

RESUMEN

Site-1 sodium channel blockers (S1SCBs) act as potent local anaesthetics, but they can cause severe systemic toxicity. Delivery systems can be used to reduce the toxicity, but the hydrophilicity of S1SCBs makes their encapsulation challenging. Here, we report a self-assembling delivery system for S1SCBs whose design is inspired by the specific interactions of S1SCBs with two peptide sequences on the sodium channel. Specifically, the peptides were modified with hydrophobic domains so that they could assemble into nanofibres that facilitated specific binding with the S1SCBs tetrodotoxin, saxitoxin and dicarbamoyl saxitoxin. Injection of S1SCB-carrying nanofibres at the sciatic nerves of rats led to prolonged nerve blockade and to reduced systemic toxicity, with benign local-tissue reaction. The strategy of mimicking a molecular binding site via supramolecular interactions may be applicable more broadly to the design of drug delivery systems for receptor-mediated drugs.


Asunto(s)
Anestésicos Locales , Bloqueo Nervioso , Animales , Ratas , Ratas Sprague-Dawley , Canales de Sodio , Tetrodotoxina
7.
Lancet Digit Health ; 3(4): e266-e273, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33640306

RESUMEN

Globally, neonatal mortality remains unacceptability high. Physiological monitoring is foundational to the care of these vulnerable patients to assess neonatal cardiopulmonary status, guide medical intervention, and determine readiness for safe discharge. However, most existing physiological monitoring systems require multiple electrodes and sensors, which are linked to wires tethered to wall-mounted display units, to adhere to the skin. For neonates, these systems can cause skin injury, prevent kangaroo mother care, and complicate basic clinical care. Novel, wireless, and biointegrated sensors provide opportunities to enhance monitoring capabilities, reduce iatrogenic injuries, and promote family-centric care. Early validation data have shown performance equivalent to (and sometimes exceeding) standard-of-care monitoring systems in premature neonates cared for in high-income countries. The reusable nature of these sensors and compatibility with low-cost mobile phones have the future potential to enable substantially lower monitoring costs compared with existing systems. Deployment at scale, in low-income countries, holds the promise of substantial improvements in neonatal outcomes.


Asunto(s)
Cuidados Críticos/métodos , Electrónica Médica/instrumentación , Cuidado del Lactante/métodos , Monitoreo Fisiológico/instrumentación , Tecnología Inalámbrica/instrumentación , Países en Desarrollo , Humanos , Lactante , Recién Nacido
8.
Proc Natl Acad Sci U S A ; 117(50): 31674-31684, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257558

RESUMEN

The standard of clinical care in many pediatric and neonatal neurocritical care units involves continuous monitoring of cerebral hemodynamics using hard-wired devices that physically adhere to the skin and connect to base stations that commonly mount on an adjacent wall or stand. Risks of iatrogenic skin injuries associated with adhesives that bond such systems to the skin and entanglements of the patients and/or the healthcare professionals with the wires can impede clinical procedures and natural movements that are critical to the care, development, and recovery of pediatric patients. This paper presents a wireless, miniaturized, and mechanically soft, flexible device that supports measurements quantitatively comparable to existing clinical standards. The system features a multiphotodiode array and pair of light-emitting diodes for simultaneous monitoring of systemic and cerebral hemodynamics, with ability to measure cerebral oxygenation, heart rate, peripheral oxygenation, and potentially cerebral pulse pressure and vascular tone, through the utilization of multiwavelength reflectance-mode photoplethysmography and functional near-infrared spectroscopy. Monte Carlo optical simulations define the tissue-probing depths for source-detector distances and operating wavelengths of these systems using magnetic resonance images of the head of a representative pediatric patient to define the relevant geometries. Clinical studies on pediatric subjects with and without congenital central hypoventilation syndrome validate the feasibility for using this system in operating hospitals and define its advantages relative to established technologies. This platform has the potential to substantially enhance the quality of pediatric care across a wide range of conditions and use scenarios, not only in advanced hospital settings but also in clinics of lower- and middle-income countries.


Asunto(s)
Técnicas Biosensibles , Circulación Cerebrovascular/fisiología , Monitorización Hemodinámica/instrumentación , Trastornos del Neurodesarrollo/diagnóstico , Monitorización Neurofisiológica/instrumentación , Adolescente , Niño , Desarrollo Infantil/fisiología , Preescolar , Femenino , Monitorización Hemodinámica/métodos , Humanos , Lactante , Masculino , Trastornos del Neurodesarrollo/fisiopatología , Monitorización Neurofisiológica/métodos , Espectroscopía Infrarroja Corta/instrumentación , Dispositivos Electrónicos Vestibles , Tecnología Inalámbrica/instrumentación
9.
Nat Med ; 26(3): 418-429, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32161411

RESUMEN

Standard clinical care in neonatal and pediatric intensive-care units (NICUs and PICUs, respectively) involves continuous monitoring of vital signs with hard-wired devices that adhere to the skin and, in certain instances, can involve catheter-based pressure sensors inserted into the arteries. These systems entail risks of causing iatrogenic skin injuries, complicating clinical care and impeding skin-to-skin contact between parent and child. Here we present a wireless, non-invasive technology that not only offers measurement equivalency to existing clinical standards for heart rate, respiration rate, temperature and blood oxygenation, but also provides a range of important additional features, as supported by data from pilot clinical studies in both the NICU and PICU. These new modalities include tracking movements and body orientation, quantifying the physiological benefits of skin-to-skin care, capturing acoustic signatures of cardiac activity, recording vocal biomarkers associated with tonality and temporal characteristics of crying and monitoring a reliable surrogate for systolic blood pressure. These platforms have the potential to substantially enhance the quality of neonatal and pediatric critical care.


Asunto(s)
Técnicas Biosensibles , Unidades de Cuidado Intensivo Neonatal , Unidades de Cuidado Intensivo Pediátrico , Monitoreo Fisiológico , Piel/anatomía & histología , Tecnología Inalámbrica , Monitoreo Ambulatorio de la Presión Arterial , Niño , Preescolar , Electrocardiografía , Diseño de Equipo , Humanos , Recién Nacido , Fotopletismografía , Factores de Tiempo
10.
Anesth Analg ; 129(3): 709-717, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31425210

RESUMEN

BACKGROUND: Capsaicin, the active component of chili peppers, can produce sensory-selective peripheral nerve blockade. Coadministration of capsaicin and tetrodotoxin, a site-1 sodium channel blocker, can achieve a synergistic effect on duration of nerve blocks. However, capsaicin can be neurotoxic, and tetrodotoxin can cause systemic toxicity. We evaluated whether codelivery of capsaicin and tetrodotoxin liposomes can achieve prolonged local anesthesia without local or systemic toxicity. METHODS: Capsaicin- and tetrodotoxin-loaded liposomes were developed. Male Sprague-Dawley rats were injected at the sciatic nerve with free capsaicin, capsaicin liposomes, free tetrodotoxin, tetrodotoxin liposomes, and blank liposomes, singly or in combination. Sensory and motor nerve blocks were assessed by a modified hotplate test and a weight-bearing test, respectively. Local toxicity was assessed by histologic scoring of tissues at the injection sites and transmission electron microscopic examination of the sciatic nerves. Systemic toxicity was assessed by rates of contralateral nerve deficits and/or mortality. RESULTS: The combination of capsaicin liposomes and tetrodotoxin liposomes achieved a mean duration of sensory block of 18.2 hours (3.8 hours) [mean (SD)], far longer than that from capsaicin liposomes [0.4 hours (0.5 hours)] (P < .001) or tetrodotoxin liposomes [0.4 hours (0.7 hours)] (P < .001) given separately with or without the second drug in free solution. This combination caused minimal myotoxicity and muscle inflammation, and there were no changes in the percentage or diameter of unmyelinated axons. There was no systemic toxicity. CONCLUSIONS: The combination of encapsulated tetrodotoxin and capsaicin achieved marked prolongation of nerve block. This combination did not cause detectable local or systemic toxicity. Capsaicin may be useful for its synergistic effects on other formulations even when used in very small, safe quantities.


Asunto(s)
Anestesia Local/métodos , Anestésicos Locales/administración & dosificación , Capsaicina/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Bloqueo Nervioso/métodos , Tetrodotoxina/administración & dosificación , Anestésicos Locales/metabolismo , Animales , Capsaicina/metabolismo , Esquema de Medicación , Quimioterapia Combinada , Liposomas , Masculino , Ratas , Ratas Sprague-Dawley , Nervio Ciático/química , Nervio Ciático/efectos de los fármacos , Nervio Ciático/metabolismo , Tetrodotoxina/metabolismo
11.
J Control Release ; 286: 55-63, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30030183

RESUMEN

Externally triggerable drug delivery systems have promising potential in providing flexible control of the timing, duration, and intensity of treatment according to patient's needs, while reducing side effects and increasing therapeutic efficacy. However, a limitation to translating such systems into clinical practice is the difficulty to predict the tissue depth at which such systems could be safely used in vivo (e.g. activatable at the target site with a clinically-safe energy dosage). An effective method is needed to evaluate the clinical potential of externally triggerable drug delivery systems. Here we have a method and approach to predicting the tissue depth at which a drug delivery system can be safely triggered in vivo by an external energy source. We used in vitro and ex vivo experiments combined with a mathematical model to develop a method to predict activated drug release at different tissue depths, which was then validated in vivo. We constructed these models for liposomal drug delivery systems triggered by two of the most commonly studied external stimuli: ultrasound and near infrared light. We developed the approach in two prevalent tissue types: muscle and fat. Our method identified two important parameters in the activation of drug delivery systems in tissue: 1) the ability of the activating energy to penetrate tissue, 2) the sensitivity of the system to the activation source. The method was validated by correlation with triggered sciatic nerve block in the rat in vivo, demonstrating that this approach provided an accurate estimate of activated release at different tissue depths.


Asunto(s)
Preparaciones de Acción Retardada/química , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Liposomas/química , Modelos Biológicos , Animales , Bovinos , Oro/química , Rayos Infrarrojos , Masculino , Nanotubos/química , Ratas Sprague-Dawley , Sonicación , Porcinos
13.
Anesth Analg ; 126(4): 1170-1175, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29239940

RESUMEN

BACKGROUND: The relatively short duration of effect of local anesthetics has been addressed by encapsulation in drug delivery systems. Codelivery with a single compound that produces an adjuvant effect on nerve block but without intrinsic local anesthetic properties can further prolong the nerve block effect. Here, we investigated whether codelivery of more than 1 encapsulated adjuvant compound can further enhance nerve blockade. METHODS: Liposomes loaded with bupivacaine (Bup), dexamethasone phosphate (DexP), or dexmedetomidine (DMED) were synthesized and its in vitro drug release profiles were determined. Animals (Sprague-Dawley rats) were injected with liposomal Bup (Lipo-Bup) and adjuvants at the sciatic nerve and underwent a modified hot plate test to assess the degree of nerve block. The duration of block was monitored and the tissue reaction was assessed. RESULTS: Coinjection of Lipo-Bup with liposomal DexP (Lipo-DexP) and liposomal DMED (Lipo-DMED) prolonged the duration of sciatic nerve block 2.9-fold compared to Lipo-Bup alone (95% confidence interval, 1.9- to 3.9-fold). The duration of the block using this combination was significantly increased to 16.2 ± 3.5 hours compared to Lipo-Bup with a single liposomal adjuvant (8.7 ± 2.4 hours with Lipo-DMED, P = .006 and 9.9 ± 5.9 hours with Lipo-DexP, P = .008). The coinjection of Lipo-Bup with liposomal adjuvants decreased tissue inflammation (P = .014) but did not have a significant effect on myotoxicity when compared to Lipo-Bup alone. Coinjection of Lipo-Bup with unencapsulated adjuvants prolonged the duration of nerve block as well (25.0 ± 6.3 hours; P < .001) however was accompanied by systemic side effects. CONCLUSIONS: Codelivery of Lipo-DexP and Lipo-DMED enhanced the efficacy of Lipo-Bup. This benefit was also seen with codelivery of both adjuvant molecules in the unencapsulated state, but with marked systemic toxicity.


Asunto(s)
Adyuvantes Anestésicos/administración & dosificación , Anestesia Local/métodos , Anestésicos Combinados/administración & dosificación , Anestésicos Locales/administración & dosificación , Bupivacaína/administración & dosificación , Dexametasona/administración & dosificación , Dexmedetomidina/administración & dosificación , Bloqueo Nervioso/métodos , Nervio Ciático/efectos de los fármacos , Adyuvantes Anestésicos/toxicidad , Anestesia Local/efectos adversos , Anestésicos Combinados/toxicidad , Anestésicos Locales/toxicidad , Animales , Bupivacaína/toxicidad , Dexametasona/toxicidad , Dexmedetomidina/toxicidad , Liberación de Fármacos , Cinética , Liposomas , Masculino , Bloqueo Nervioso/efectos adversos , Umbral del Dolor/efectos de los fármacos , Ratas Sprague-Dawley , Factores de Tiempo
14.
Nat Biomed Eng ; 1: 644-653, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29152410

RESUMEN

On-demand relief of local pain would allow patients to control the timing, intensity and duration of nerve block in a safe and non-invasive manner. Ultrasound would be a suitable trigger for such a system, as it is in common clinical use and can penetrate deeply into the body. Here, we demonstrate that ultrasound-triggered delivery of an anaesthetic from liposomes allows the timing, intensity and duration of nerve block to be controlled by ultrasound parameters. On insonation, the encapsulated sonosensitizer protoporphyrin IX produces reactive oxygen species that react with the liposomal membrane, leading to the release of the potent local anaesthetic tetrodotoxin. We also show repeatable ultrasound-triggered nerve blocks in vivo, with nerve-block duration depending on the extent and intensity of insonation. We did not detect any systemic toxicity, and tissue reaction was benign in all groups. On-demand, personalized local anaesthesia could be beneficial for the managing of relatively localized pain states, and potentially minimize opioid use.

15.
ACS Appl Mater Interfaces ; 9(48): 41737-41747, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29131564

RESUMEN

Common photosensitizers used in photodynamic therapy do not penetrate the skin effectively. In addition, the visible blue and red lights used to excite such photosensitizers have shallow penetration depths through tissue. To overcome these limitations, we have synthesized ultraviolet- and visible-light-emitting, energy-transfer-based upconversion nanoparticles and coencapsulated them inside PLGA-PEG (methoxy poly(ethylene glycol)-b-poly(lactic-co-glycolic acid)) nanoparticles with the photosensitizer protoporphyrin IX. Nd3+ has been introduced as a sensitizer in the upconversion nanostructure to allow its excitation at 808 nm. The subcytotoxic doses of the hybrid nanoparticles have been evaluated on different cell lines (i.e., fibroblasts, HaCaT, THP-1 monocytic cell line, U251MG (glioblastoma cell line), and mMSCs (murine mesenchymal stem cells). Upon NIR (near infrared)-light excitation, the upconversion nanoparticles emitted UV and VIS light, which consequently activated the generation of reactive-oxygen species (ROS). In addition, after irradiating at 808 nm, the resulting hybrid nanoparticles containing both upconversion nanoparticles and protoporphyrin IX generated 3.4 times more ROS than PLGA-PEG nanoparticles containing just the same dose of protoporphyrin IX. Their photodynamic effect was also assayed on different cell cultures, demonstrating their efficacy in selectively killing treated and irradiated cells. Compared to the topical application of the free photosensitizer, enhanced skin permeation and penetration were observed for the nanoparticulate formulation, using an ex vivo human-skin-permeation experiment. Whereas free protoporphyrin IX remained located at the outer layer of the skin, nanoparticle-encapsulated protoporphyrin IX was able to penetrate through the epidermal layer slightly into the dermis.

16.
Nano Lett ; 17(11): 7138-7145, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29058443

RESUMEN

On-demand pain relief systems would be very helpful additions to the armamentarium of pain management. Near-infrared triggered drug delivery systems have demonstrated the potential to provide such care. However, challenges remain in making such systems as stimulus-sensitive as possible, to enhance depth of tissue penetration, repeatability of triggering, and safety. Here we developed liposomes containing the local anesthetic tetrodotoxin and also containing a photosensitizer and gold nanorods that were excitable at the same near-infrared wavelength. The combination of triggering mechanisms enhanced the photosensitivity and repeatability of the system in vitro when compared with liposomes with a single photoresponsive component. In vivo, on-demand local anesthesia could be induced with a low irradiance and short irradiation duration, and liposomes containing both photosensitizer and gold nanorods were more effective than those containing just one photoresponsive component. Tissue reaction was benign.


Asunto(s)
Anestésicos Locales/administración & dosificación , Preparaciones de Acción Retardada/química , Sistemas de Liberación de Medicamentos/métodos , Dolor/tratamiento farmacológico , Tetrodotoxina/administración & dosificación , Anestésicos Locales/farmacocinética , Anestésicos Locales/uso terapéutico , Animales , Línea Celular , Liberación de Fármacos , Calefacción , Humanos , Rayos Infrarrojos , Luz , Liposomas/química , Ratas , Resonancia por Plasmón de Superficie , Tetrodotoxina/farmacocinética , Tetrodotoxina/uso terapéutico
17.
J Control Release ; 251: 68-74, 2017 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-28153763

RESUMEN

A phototriggerable system whereby patients could repeatedly and non-invasively control the timing and dosage of local anesthesia according to their needs would be beneficial for perioperative pain and perhaps obviate the need for oral narcotics. However, clinical application of phototriggerable systems have been limited by concerns over phototoxicity of lasers and limited tissue penetration of light. To address these limitations, we increased the devices' effective sensitivity to light by co-delivering a second compound, dexmedetomidine, that potentiates the effect of delivered local anesthetics. The concurrent release of dexmedetomidine enhanced the efficacy of released local anesthetics, greatly increasing the number of triggerable nerve blocks (up to nine triggerable events upon a single injection) and reducing the irradiance needed to induce nerve block by 94%. The intensity and duration of on-demand analgesia could be adjusted by varying the intensity and duration of irradiance, which could not only be delivered by lasers, but also by light-emitting diodes, which are less expensive, safer, and more portable.


Asunto(s)
Anestesia Local/métodos , Compuestos Organometálicos/farmacología , Paladio , Fármacos Fotosensibilizantes/farmacología , Animales , Línea Celular , Supervivencia Celular , Dexmedetomidina/química , Dexmedetomidina/farmacología , Sistemas de Liberación de Medicamentos , Humanos , Liposomas , Masculino , Ratones , Bloqueo Nervioso , Compuestos Organometálicos/química , Procesos Fotoquímicos , Fármacos Fotosensibilizantes/química , Ratas Sprague-Dawley
18.
Proc Natl Acad Sci U S A ; 112(51): 15719-24, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26644576

RESUMEN

Pain management would be greatly enhanced by a formulation that would provide local anesthesia at the time desired by patients and with the desired intensity and duration. To this end, we have developed near-infrared (NIR) light-triggered liposomes to provide on-demand adjustable local anesthesia. The liposomes contained tetrodotoxin (TTX), which has ultrapotent local anesthetic properties. They were made photo-labile by encapsulation of a NIR-triggerable photosensitizer; irradiation at 730 nm led to peroxidation of liposomal lipids, allowing drug release. In vitro, 5.6% of TTX was released upon NIR irradiation, which could be repeated a second time. The formulations were not cytotoxic in cell culture. In vivo, injection of liposomes containing TTX and the photosensitizer caused an initial nerve block lasting 13.5 ± 3.1 h. Additional periods of nerve block could be induced by irradiation at 730 nm. The timing, intensity, and duration of nerve blockade could be controlled by adjusting the timing, irradiance, and duration of irradiation. Tissue reaction to this formulation and the associated irradiation was benign.


Asunto(s)
Anestesia Local/métodos , Bloqueo Nervioso/métodos , Nervio Ciático , Animales , Luz , Peroxidación de Lípido , Liposomas , Masculino , Ratas , Ratas Sprague-Dawley , Tetrodotoxina/administración & dosificación
19.
Nano Today ; 10(4): 451-467, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26644797

RESUMEN

Externally triggerable drug delivery systems provide a strategy for the delivery of therapeutic agents preferentially to a target site, presenting the ability to enhance therapeutic efficacy while reducing side effects. Light is a versatile and easily tuned external stimulus that can provide spatiotemporal control. Here we will review the use of nanoparticles in which light triggers drug release or induces particle binding to tissues (phototargeting).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...