Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(19): e2118385119, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35500115

RESUMEN

Embryonic stem cells (ESCs) are defined by their ability to self-renew and the potential to differentiate into all tissues of the developing organism. We previously demonstrated that deleting the catalytic SET domain of the Set1A/complex of proteins associated with SET1 histone methyltransferase (Set1A/COMPASS) in mouse ESCs does not impair their viability or ability to self-renew; however, it leads to defects in differentiation. The precise mechanisms by which Set1A executes these functions remain to be elucidated. In this study, we demonstrate that mice lacking the SET domain of Set1A are embryonic lethal at a stage that is unique from null alleles. To gain insight into Set1A function in regulating pluripotency, we conducted a CRISPR/Cas9-mediated dropout screen and identified the MOZ/MORF (monocytic leukaemia zinc finger protein/monocytic leukaemia zinc finger protein-related factor) and HBO1 (HAT bound to ORC1) acetyltransferase complex member ING5 as a synthetic perturbation to Set1A. The loss of Ing5 in Set1AΔSET mouse ESCs decreases the fitness of these cells, and the simultaneous loss of ING5 and in Set1AΔSET leads to up-regulation of differentiation-associated genes. Taken together, our results point toward Set1A/COMPASS and ING5 as potential coregulators of the self-renewal and differentiation status of ESCs.


Asunto(s)
Histonas , Células Madre Embrionarias de Ratones , Animales , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Mutaciones Letales Sintéticas , Proteínas Supresoras de Tumor
2.
Sci Adv ; 6(26): eaaz4764, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32637595

RESUMEN

Set1A and Set1B, two members of the COMPASS family of methyltransferases that methylate the histone H3 lysine 4 (H3K4) residue, have been accredited as primary depositors of global H3K4 trimethylation (H3K4me3) in mammalian cells. Our previous studies in mouse embryonic stem cells (ESCs) demonstrated that deleting the enzymatic SET domain of Set1A does not perturb bulk H3K4me3, indicating possible compensatory roles played by other COMPASS methyltransferases. Here, we generated a series of ESC lines harboring compounding mutations of COMPASS methyltransferases. We find that Set1B is functionally redundant to Set1A in implementing H3K4me3 at highly expressed genes, while Mll2 deposits H3K4me3 at less transcriptionally active promoters. While Set1A-B/COMPASS is responsible for broad H3K4me3 peaks, Mll2/COMPASS establishes H3K4me3 with narrow breadth. Additionally, Mll2 helps preserve global H3K4me3 levels and peak breadth in the absence of Set1A-B activity. Our results illustrate the biological flexibility of such enzymes in regulating transcription in a context-dependent manner to maintain stem cell identity.

3.
Sci Adv ; 5(7): eaax2887, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31281901

RESUMEN

Using biochemical characterization of fusion proteins associated with endometrial stromal sarcoma, we identified JAZF1 as a new subunit of the NuA4 acetyltransferase complex and CXORF67 as a subunit of the Polycomb Repressive Complex 2 (PRC2). Since CXORF67's interaction with PRC2 leads to decreased PRC2-dependent H3K27me2/3 deposition, we propose a new name for this gene: CATACOMB (catalytic antagonist of Polycomb; official gene name: EZHIP ). We map CATACOMB's inhibitory function to a short highly conserved region and identify a single methionine residue essential for diminution of H3K27me2/3 levels. Remarkably, the amino acid sequence surrounding this critical methionine resembles the oncogenic histone H3 Lys27-to-methionine (H3K27M) mutation found in high-grade pediatric gliomas. As CATACOMB expression is regulated through DNA methylation/demethylation, we propose CATACOMB as the potential interlocutor between DNA methylation and PRC2 activity. We raise the possibility that similar regulatory mechanisms could exist for other methyltransferase complexes such as Trithorax/COMPASS.


Asunto(s)
Glioma/metabolismo , Histonas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Oncogénicas/biosíntesis , Complejo Represivo Polycomb 2/metabolismo , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Metilación de ADN , ADN de Neoplasias , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Glioma/patología , Células HCT116 , Histonas/genética , Humanos , Metilación , Proteínas de Neoplasias/genética , Proteínas Oncogénicas/genética , Complejo Represivo Polycomb 2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...