Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
J Immunol ; 212(9): 1407-1419, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38497670

RESUMEN

Mast cells (MCs) play critical roles in the establishment of allergic diseases. We recently demonstrated an unexpected, proinflammatory role for IL-10 in regulating MC responses. IL-10 enhanced MC activation and promoted IgE-dependent responses during food allergy. However, whether these effects extend to IgE-independent stimuli is not clear. In this article, we demonstrate that IL-10 plays a critical role in driving IL-33-mediated MC responses. IL-10 stimulation enhanced MC expansion and degranulation, ST2 expression, IL-13 production, and phospho-relA upregulation in IL-33-treated cells while suppressing TNF-α. These effects were partly dependent on endogenous IL-10 and further amplified in MCs coactivated with both IL-33 and IgE/Ag. IL-10's divergent effects also extended in vivo. In a MC-dependent model of IL-33-induced neutrophilia, IL-10 treatment enhanced MC responsiveness, leading to suppression of neutrophils and decreased TNF-α. In contrast, during IL-33-induced type 2 inflammation, IL-10 priming exacerbated MC activity, resulting in MC recruitment to various tissues, enhanced ST2 expression, induction of hypothermia, recruitment of eosinophils, and increased MCPT-1 and IL-13 levels. Our data elucidate an important role for IL-10 as an augmenter of IL-33-mediated MC responses, with implications during both allergic diseases and other MC-dependent disorders. IL-10 induction is routinely used as a prognostic marker of disease improvement. Our data suggest instead that IL-10 can enhance ST2 responsiveness in IL-33-activated MCs, with the potential to both aggravate or suppress disease severity depending on the inflammatory context.


Asunto(s)
Hipersensibilidad a los Alimentos , Mastocitos , Humanos , Mastocitos/metabolismo , Interleucina-10/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Inmunoglobulina E/metabolismo , Interleucina-33/metabolismo , Interleucina-13/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Inflamación/metabolismo , Degranulación de la Célula
2.
J Appl Physiol (1985) ; 136(4): 877-888, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38385181

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is characterized by impaired vascular endothelial function that may be improved by hydroxy-methylglutaryl-CoA (HMG-CoA) reductase enzyme inhibition. Thus, using a parallel, double-blind, placebo-controlled design, this study evaluated the efficacy of 30-day atorvastatin administration (10 mg daily) on peripheral vascular function and biomarkers of inflammation and oxidative stress in 16 patients with HFpEF [Statin: n = 8, 74 ± 6 yr, ejection fraction (EF) 52-73%; Placebo: n = 8, 67 ± 9 yr, EF 56-72%]. Flow-mediated dilation (FMD) and sustained-stimulus FMD (SS-FMD) during handgrip (HG) exercise, reactive hyperemia (RH), and blood flow during HG exercise were evaluated to assess conduit vessel function, microvascular function, and exercising muscle blood flow, respectively. FMD improved following statin administration (pre, 3.33 ± 2.13%; post, 5.23 ± 1.35%; P < 0.01), but was unchanged in the placebo group. Likewise, SS-FMD, quantified using the slope of changes in brachial artery diameter in response to increases in shear rate, improved following statin administration (pre: 5.31e-5 ± 3.85e-5 mm/s-1; post: 8.54e-5 ± 4.98e-5 mm/s-1; P = 0.03), with no change in the placebo group. Reactive hyperemia and exercise hyperemia responses were unchanged in both statin and placebo groups. Statin administration decreased markers of lipid peroxidation (malondialdehyde, MDA) (pre, 0.652 ± 0.095; post, 0.501 ± 0.094; P = 0.04), whereas other inflammatory and oxidative stress biomarkers were unchanged. Together, these data provide new evidence for the efficacy of low-dose statin administration to improve brachial artery endothelium-dependent vasodilation, but not microvascular function or exercising limb blood flow, in patients with HFpEF, which may be due in part to reductions in oxidative stress.NEW & NOTEWORTHY This is the first study to investigate the impact of statin administration on vascular function and exercise hyperemia in patients with heart failure with preserved ejection fraction (HFpEF). In support of our hypothesis, both conventional flow-mediated dilation (FMD) testing and brachial artery vasodilation in response to sustained elevations in shear rate during handgrip exercise increased significantly in patients with HFpEF following statin administration, beneficial effects that were accompanied by a decrease in biomarkers of oxidative damage. However, contrary to our hypothesis, reactive hyperemia and exercise hyperemia were unchanged in patients with HFpEF following statin therapy. These data provide new evidence for the efficacy of low-dose statin administration to improve brachial artery endothelium-dependent vasodilation, but not microvascular reactivity or exercising muscle blood flow in patients with HFpEF, which may be due in part to reductions in oxidative stress.


Asunto(s)
Insuficiencia Cardíaca , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Hiperemia , Humanos , Biomarcadores , Velocidad del Flujo Sanguíneo/fisiología , Arteria Braquial/fisiología , Endotelio Vascular/fisiología , Fuerza de la Mano/fisiología , Insuficiencia Cardíaca/tratamiento farmacológico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Hiperemia/tratamiento farmacológico , Flujo Sanguíneo Regional/fisiología , Volumen Sistólico/fisiología , Vasodilatación/fisiología , Anciano , Anciano de 80 o más Años , Persona de Mediana Edad
3.
J Immunol ; 212(8): 1277-1286, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38381001

RESUMEN

IL-33 is an inflammatory cytokine that promotes allergic disease by activating group 2 innate lymphoid cells, Th2 cells, and mast cells. IL-33 is increased in asthmatics, and its blockade suppresses asthma-like inflammation in mouse models. Homeostatic control of IL-33 signaling is poorly understood. Because the IL-33 receptor, ST2, acts via cascades used by the TLR family, similar feedback mechanisms may exist. MicroRNA (miR)-146a is induced by LPS-mediated TLR4 signaling and serves as a feedback inhibitor. Therefore, we explored whether miR-146a has a role in IL-33 signaling. IL-33 induced cellular and exosomal miR-146a expression in mouse bone marrow-derived mast cells (BMMCs). BMMCs transfected with a miR-146a antagonist or derived from miR-146a knockout mice showed enhanced cytokine expression in response to IL-33, suggesting that miR-146a is a negative regulator of IL-33-ST2 signaling. In vivo, miR-146a expression in plasma exosomes was elevated after i.p. injection of IL-33 in wild-type but not mast cell-deficient KitW-sh/W-sh mice. Finally, KitW-sh/W-sh mice acutely reconstituted with miR-146a knockout BMMCs prior to IL-33 challenge had elevated plasma IL-6 levels compared with littermates receiving wild-type BMMCs. These results support the hypothesis that miR-146a is a feedback regulator of IL-33-mediated mast cell functions associated with allergic disease.


Asunto(s)
Asma , MicroARNs , Animales , Ratones , Asma/genética , Citocinas/genética , Retroalimentación , Inmunidad Innata , Proteína 1 Similar al Receptor de Interleucina-1/genética , Interleucina-33 , Linfocitos/metabolismo , Mastocitos/metabolismo , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo
4.
J Appl Physiol (1985) ; 136(3): 525-534, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38174372

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is associated with autonomic dysregulation, which may be related to baroreflex dysfunction. Thus, we tested the hypothesis that cardiac and peripheral vascular responses to baroreflex activation via lower-body negative pressure (LBNP; -10, -20, -30, -40 mmHg) would be diminished in patients with HFpEF (n = 10, 71 ± 7 yr) compared with healthy controls (CON, n = 9, 69 ± 5 yr). Changes in heart rate (HR), mean arterial pressure (MAP, Finapres), forearm blood flow (FBF, ultrasound Doppler), and thoracic impedance (Z) were determined. Mild levels of LBNP (-10 and -20 mmHg) were used to specifically assess the cardiopulmonary baroreflex, whereas responses across the greater levels of LBNP represented an integrated baroreflex response. LBNP significantly increased in HR in CON subjects at -30 and -40 mmHg (+3 ± 3 and +6 ± 5 beats/min, P < 0.01), but was unchanged in patients with HFpEF across all LBNP levels. LBNP provoked progressive peripheral vasoconstriction, as quantified by changes in forearm vascular conductance (FVC), in both groups. However, a marked (40%-60%) attenuation in FVC responses was observed in patients with HFpEF (-6 ± 8, -15 ± 6, -16 ± 5, and -19 ± 7 mL/min/mmHg at -10, -20, -30, and -40 mmHg, respectively) compared with controls (-15 ± 10, -22 ± 6, -25 ± 10, and -28 ± 10 mL/min/mmHg, P < 0.01). MAP was unchanged in both groups. Together, these data provide new evidence for impairments in cardiopulmonary baroreflex function and diminished cardiovascular responsiveness during hypovolemia in patients with HFpEF, which may be an important aspect of the disease-related changes in autonomic cardiovascular control in this patient group.NEW & NOTEWORTHY Data from the current study demonstrate diminished cardiovascular responsiveness during hypovolemia induced by incremental lower-body negative pressure in patients with heart failure with preserved ejection fraction (HFpEF). These diminished responses imply impaired cardiopulmonary baroreflex function and altered autonomic cardiovascular regulation which may represent an important aspect of HFpEF pathophysiology.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Hipovolemia , Barorreflejo , Volumen Sistólico , Arterias
5.
Ann Am Thorac Soc ; 20(12): 1718-1725, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37683277

RESUMEN

Rationale: Pulmonary arterial hypertension (PAH) is a heterogeneous disease within a complex diagnostic and treatment environment. Other complex heart and lung diseases have substantial regional variation in characteristics and outcomes; however, this has not been previously described in PAH. Objectives: To identify baseline differences between U.S. census regions in the characteristics and outcomes for participants in the Pulmonary Hypertension Association Registry (PHAR). Methods: Adults with PAH were divided into regional groups (Northeast, South, Midwest, and West), and baseline differences between census regions were presented. Kaplan-Meier survival analyses and Cox proportional hazards were used to estimate the association between region and mortality in unadjusted and adjusted models. Results: Substantial differences by census regions were seen in age, race, ethnicity, marital status, employment, insurance payor breakdown, active smoking, and current alcohol use. Differences were also seen in PAH etiology and baseline 6-minute walk distance test results. Treatment characteristics varied by census region, and mortality appeared to be lower in PHAR participants in the West (hazard ratio, 0.60; 95% confidence interval, 0.43-0.83, P = 0.005). This difference was not readily explained by differences in demographic characteristics, PAH etiology, baseline severity, baseline medication regimen, or disease prevalence. Conclusions: The present study suggests significant regional variation among participants at accredited pulmonary vascular disease centers in multiple baseline characteristics and mortality. This variation may have implications for clinical research planning and represent an important focus for further study to better understand whether there are remediable care aspects that can be addressed in the pursuit of providing equitable care in the United States.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Adulto , Humanos , Estados Unidos/epidemiología , Hipertensión Pulmonar/epidemiología , Hipertensión Pulmonar/terapia , Hipertensión Pulmonar/etiología , Hipertensión Arterial Pulmonar/complicaciones , Hipertensión Pulmonar Primaria Familiar , Modelos de Riesgos Proporcionales , Sistema de Registros
6.
Sci Signal ; 16(802): eabc9089, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699080

RESUMEN

There is a clinical need for new treatment options addressing allergic disease. Selective serotonin reuptake inhibitors (SSRIs) are a class of antidepressants that have anti-inflammatory properties. We tested the effects of the SSRI fluoxetine on IgE-induced function of mast cells, which are critical effectors of allergic inflammation. We showed that fluoxetine treatment of murine or human mast cells reduced IgE-mediated degranulation, cytokine production, and inflammatory lipid secretion, as well as signaling mediated by the mast cell activator ATP. In a mouse model of systemic anaphylaxis, fluoxetine reduced hypothermia and cytokine production. Fluoxetine was also effective in a model of allergic airway inflammation, where it reduced bronchial responsiveness and inflammation. These data show that fluoxetine suppresses mast cell activation by impeding an FcɛRI-ATP positive feedback loop and support the potential repurposing of this SSRI for use in allergic disease.


Asunto(s)
Fluoxetina , Mastocitos , Humanos , Animales , Ratones , Fluoxetina/farmacología , Retroalimentación , Inflamación/tratamiento farmacológico , Citocinas , Adenosina Trifosfato , Inmunoglobulina E
7.
Am J Physiol Heart Circ Physiol ; 325(4): H806-H813, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37566111

RESUMEN

Exercising muscle blood flow is reduced in patients with heart failure with a preserved ejection fraction (HFpEF), which may be related to disease-related changes in the ability to overcome sympathetic nervous system (SNS)-mediated vasoconstriction during exercise, (i.e., "functional sympatholysis"). Thus, in 12 patients with HFpEF (69 ± 7 yr) and 11 healthy controls (Con, 69 ± 4 yr), we examined forearm blood flow (FBF), mean arterial pressure (MAP), and forearm vascular conductance (FVC) during rhythmic handgrip exercise (HG) at 30% of maximum voluntary contraction with or without lower-body negative pressure (LBNP, -20 mmHg) to increase SNS activity and elicit peripheral vasoconstriction. SNS-mediated vasoconstrictor responses were determined as LBNP-induced changes (%Δ) in FVC, and the "magnitude of sympatholysis" was calculated as the difference between responses at rest and during exercise. At rest, the LBNP-induced change in FVC was significantly lesser in HFpEF compared with Con (HFpEF: -9.5 ± 5.5 vs. Con: -21.0 ± 8.0%; P < 0.01). During exercise, LBNP-induced %ΔFVC was significantly attenuated in Con compared with rest (HG: -5.8 ± 6.0%; P < 0.05) but not in HFpEF (HG: -9.9 ± 2.5%; P = 0.88). Thus, the magnitude of sympatholysis was lesser in HFpEF compared with Con (HFpEF: 0.4 ± 4.7 vs. Con: -15.2 ± 11.8%; P < 0.01). These data demonstrate a diminished ability to attenuate SNS-mediated vasoconstriction in HFpEF and provide new evidence suggesting impaired functional sympatholysis in this patient group.NEW & NOTEWORTHY Data from the current study suggest that functional sympatholysis, or the ability to adequately attenuate sympathetic nervous system (SNS)-mediated vasoconstriction during exercise, is impaired in patients with heart failure with preserved ejection fraction (HFpEF). These observations extend the current understanding of HFpEF pathophysiology by implicating inadequate functional sympatholysis as an important contributor to reduced exercising muscle blood flow in this patient group.


Asunto(s)
Insuficiencia Cardíaca , Simpaticolíticos , Humanos , Fuerza de la Mano/fisiología , Volumen Sistólico , Contracción Muscular , Músculo Esquelético/irrigación sanguínea , Vasoconstricción/fisiología , Sistema Nervioso Simpático , Antebrazo/irrigación sanguínea , Flujo Sanguíneo Regional/fisiología
8.
J Immunol ; 211(4): 527-538, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37449905

RESUMEN

IgE-mediated mast cell activation is a driving force in allergic disease in need of novel interventions. Statins, long used to lower serum cholesterol, have been shown in multiple large-cohort studies to reduce asthma severity. We previously found that statins inhibit IgE-induced mast cell function, but these effects varied widely among mouse strains and human donors, likely due to the upregulation of the statin target, 3-hydroxy-3-methylgutaryl-CoA reductase. Statin inhibition of mast cell function appeared to be mediated not by cholesterol reduction but by suppressing protein isoprenylation events that use cholesterol pathway intermediates. Therefore, we sought to circumvent statin resistance by targeting isoprenylation. Using genetic depletion of the isoprenylation enzymes farnesyltransferase and geranylgeranyl transferase 1 or their substrate K-Ras, we show a significant reduction in FcεRI-mediated degranulation and cytokine production. Furthermore, similar effects were observed with pharmacological inhibition with the dual farnesyltransferase and geranylgeranyl transferase 1 inhibitor FGTI-2734. Our data indicate that both transferases must be inhibited to reduce mast cell function and that K-Ras is a critical isoprenylation target. Importantly, FGTI-2734 was effective in vivo, suppressing mast cell-dependent anaphylaxis, allergic pulmonary inflammation, and airway hyperresponsiveness. Collectively, these findings suggest that K-Ras is among the isoprenylation substrates critical for FcεRI-induced mast cell function and reveal isoprenylation as a new means of targeting allergic disease.


Asunto(s)
Anafilaxia , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Ratones , Humanos , Animales , Receptores de IgE/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Farnesiltransferasa/metabolismo , Mastocitos/metabolismo , Anafilaxia/metabolismo , Transducción de Señal , Degranulación de la Célula , Inmunoglobulina E/metabolismo , Inflamación/metabolismo , Colesterol/metabolismo , Prenilación
9.
Pulm Circ ; 13(2): e12233, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37159803

RESUMEN

To better understand the impact of the COVID-19 pandemic on the care of patients with pulmonary hypertension, we conducted a retrospective cohort study evaluating health insurance status, healthcare access, disease severity, and patient reported outcomes in this population. Using the Pulmonary Hypertension Association Registry (PHAR), we defined and extracted a longitudinal cohort of pulmonary arterial hypertension (PAH) patients from the PHAR's inception in 2015 until March 2022. We used generalized estimating equations to model the impact of the COVID-19 pandemic on patient outcomes, adjusting for demographic confounders. We assessed whether insurance status modified these effects via covariate interactions. PAH patients were more likely to be on publicly-sponsored insurance during the COVID-19 pandemic compared with prior, and did not experience statistically significant delays in access to medications, increased emergency room visits or nights in the hospital, or worsening of mental health metrics. Patients on publicly-sponsored insurance had higher healthcare utilization and worse objective measures of disease severity compared with privately insured individuals irrespective of the COVID-19 pandemic. The relatively small impact of the COVID-19 pandemic on pulmonary hypertension-related outcomes was unexpected but may be due to pre-established access to high quality care at pulmonary hypertension comprehensive care centers. Irrespective of the COVID-19 pandemic, patients who were on publicly-sponsored insurance seemed to do worse, consistent with prior studies highlighting outcomes in this population. We speculate that previously established care relationships may lessen the impact of an acute event, such as a pandemic, on patients with chronic illness.

10.
J Appl Physiol (1985) ; 134(6): 1508-1519, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37167264

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is characterized by reduced ability to sustain physical activity that may be due partly to disease-related changes in autonomic function that contribute to dysregulated cardiovascular control during muscular contraction. Thus, we used a combination of static handgrip exercise (HG) and postexercise ischemia (PEI) to examine the pressor response to exercise and isolate the skeletal muscle metaboreflex, respectively. Mean arterial pressure (MAP), heart rate (HR), cardiac output (CO), and total peripheral resistance (TPR) were assessed during 2-min of static HG at 30 and 40% of maximum voluntary contraction (MVC) and subsequent PEI in 16 patients with HFpEF and 17 healthy, similarly aged controls. Changes in MAP were lower in patients with HFpEF compared with controls during both 30%MVC (Δ11 ± 7 vs. Δ15 ± 8 mmHg) and 40%MVC (Δ19 ± 14 vs. Δ30 ± 8 mmHg), and a similar pattern of response was evident during PEI (30%MVC: Δ8 ± 5 vs. Δ12 ± 8 mmHg; 40%MVC: Δ13 ± 10 vs. Δ18 ± 9 mmHg) (group effect: P = 0.078 and P = 0.017 at 30% and 40% MVC, respectively). Changes in HR, CO, and TPR did not differ between groups during HG or PEI (P > 0.05). Taken together, these data suggest a reduced pressor response to static muscle contractions in patients with HFpEF compared with similarly aged controls that may be mediated partly by a blunted muscle metaboreflex. These findings support a disease-related dysregulation in neural cardiovascular control that may reduce an ability to sustain physical activity in HFpEF.NEW & NOTEWORTHY The current investigation has identified a diminution in the exercise-induced rise in arterial blood pressure (BP) that persisted during postexercise ischemia (PEI) in an intensity-dependent manner in patients with heart failure with preserved ejection fraction (HFpEF) compared with older, healthy controls. These findings suggest that the pressor response to exercise is reduced in patients with HFpEF, and this deficit may be mediated, in part, by a blunted muscle metaboreflex, highlighting the consequences of impaired neural cardiovascular control during exercise in this patient group.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Volumen Sistólico , Fuerza de la Mano/fisiología , Isquemia , Músculo Esquelético/fisiología , Ejercicio Físico/fisiología , Reflejo/fisiología , Presión Sanguínea/fisiología
11.
Drugs ; 83(7): 577-585, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37017914

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive disease that despite advances in therapy is associated with a 7-year survival of approximately 50%. Several risk factors are associated with developing PAH, include methamphetamine use, scleroderma, human immunodeficiency virus, portal hypertension, and genetic predisposition. PAH can also be idiopathic. There are traditional pathways underlying the pathophysiology of PAH involving nitric oxide, prostacyclin, thromboxane A2, and endothelin-1, resulting in impaired vasodilation, enhanced vasoconstriction and proliferation in the pulmonary vasculature. Established PAH medications targets these pathways; however, this paper aims to discuss novel drugs for treating PAH by targeting new and alternative pathways.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/etiología , Hipertensión Arterial Pulmonar/complicaciones
13.
iScience ; 26(2): 105935, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36685041

RESUMEN

Pulmonary arterial hypertension (PAH) features pathogenic and abnormal endothelial cells (ECs), and one potential origin is clonal selection. We studied the role of p53 and toll-like receptor 3 (TLR3) in clonal expansion and pulmonary hypertension (PH) via regulation of bone morphogenetic protein (BMPR2) signaling. ECs of PAH patients had reduced p53 expression. EC-specific p53 knockout exaggerated PH, and clonal expansion reduced p53 and TLR3 expression in rat lung CD117+ ECs. Reduced p53 degradation (Nutlin 3a) abolished clonal EC expansion, induced TLR3 and BMPR2, and ameliorated PH. Polyinosinic/polycytidylic acid [Poly(I:C)] increased BMPR2 signaling in ECs via enhanced binding of interferon regulatory factor-3 (IRF3) to the BMPR2 promoter and reduced PH in p53-/- mice but not in mice with impaired TLR3 downstream signaling. Our data show that a p53/TLR3/IRF3 axis regulates BMPR2 expression and signaling in ECs. This link can be exploited for therapy of PH.

14.
J Appl Physiol (1985) ; 134(2): 328-338, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36476159

RESUMEN

There is accumulating evidence for both peripheral vascular dysfunction and impaired functional capacity in patients with heart failure with a preserved ejection fraction (HFpEF). Although derangements in the l-arginine-nitric oxide (l-Arg-NO) pathway are likely to contribute to these aspects of HFpEF pathophysiology, the impact of increased NO substrate on vascular health and physical capacity has not been evaluated in this patient population. Thus, using a single-arm study design, we evaluated the impact of enteral l-citrulline (l-Cit, 6 g/day for 7 days), a precursor for l-Arg biosynthesis, on vascular function [flow-mediated dilation (FMD), reactive hyperemia (RH), and passive limb movement (PLM)], functional capacity [6-min walk test (6MWT)], and biomarkers of l-Arg-NO signaling in 14 patients with HFpEF (n = 14, 4 M/10 F, 70 ± 10 yr, EF: 66 ± 7%). Compared with baseline (0d), 7 days of l-Cit administration improved FMD (0d: 2.5 ± 1.6%, 7d: 4.5 ± 2.9%), RH (0d: 468 ± 167 mL, 7d: 577 ± 199 mL), PLM blood flow area-under-the-curve (0d: 139 ± 130 mL, 7d: 198 ± 115 mL), and 6MWT distance (0d: 377 ± 27 m, 7d: 397 ± 27 m) (P < 0.05). An increase in plasma l-Cit (0d: 42 ± 11 µM/L, 7d: 369 ± 201 µM/L), l-Arg (0d: 65 ± 8 µM/L, 7d: 257 ± 25 µM/L), and the ratio of l-Arg to asymmetric dimethylarginine (ADMA) (0d: 136 ± 13 AU, 7d: 481 ± 49 AU) (P < 0.05) was also observed. Though preliminary in nature, these functional and biomarker assessments demonstrate a potential benefit of l-Cit administration in patients with HFpEF, findings that provide new insight into the mechanisms that govern vascular and physical dysfunction in this patient group.NEW & NOTEWORTHY The current investigation has demonstrated that l-Cit administration may improve brachial artery endothelium-dependent vasodilation, upper and lower limb microvascular function, and physical capacity in patients with HFpEF, highlighting the potential therapeutic potential of interventions targeting the l-Arg-NO signaling cascade to improve outcomes in this patient group.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Citrulina , Proyectos Piloto , Estudios Prospectivos , Volumen Sistólico/fisiología
15.
Cureus ; 14(11): e31764, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36569732

RESUMEN

Background Since the initial description in the 1980s, our understanding of the diversity of pulmonary arterial hypertension (PAH) has continued to evolve. In this study, we report the characteristics of patients seen in an academic medical center for PAH from August 2020 through November 2021 and contrast those with nationally reported data from the United States Pulmonary Hypertension Scientific Registry (USPHSR).  Study Design Investigators at the University of Utah Pulmonary Hypertension Program prospectively enrolled adult patients diagnosed with WHO Group 1 PAH, who were evaluated between August 2020 and November 2021 in a program-specific registry. Patient exposure and health histories were collected through structured interviews and questionnaires, along with clinical data and medication use. A total of 242 patients were enrolled in the University of Utah Pulmonary Hypertension Registry (UUPHR).  Results Of the 242 enrolled patients, the most common etiology was associated PAH (APAH), accounting for 71.1% of the population. The second largest etiology was idiopathic PAH (IPAH) at 26.4%. The remaining patients were distributed between familial PAH (FPAH), pulmonary veno-occlusive disease (PVOD), and others. Of the total population classified as APAH, 39% of cases were noted as secondary to connective tissue disease (CTD) and 33% as toxin-induced. These represented 28% and 24% of the total population, respectively.  Conclusions In this US-based accredited academic medical center, the etiology of PAH in our patient population contrasts with national registry data. In the UUPHR, APAH, specifically CTD-PAH and toxin-associated PAH, accounts for the majority of patients with PAH. This contrasts with IPAH, which nationally is the most reported cause of PAH. Differences in our population may reflect the regional variation of the referral site, but it is noteworthy for its contrast with historically reported phenotypes.

17.
Cells ; 11(19)2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36230993

RESUMEN

The incidence of allergic disease has grown tremendously in the past three generations. While current treatments are effective for some, there is considerable unmet need. Mast cells are critical effectors of allergic inflammation. Their secreted mediators and the receptors for these mediators have long been the target of allergy therapy. Recent drugs have moved a step earlier in mast cell activation, blocking IgE, IL-4, and IL-13 interactions with their receptors. In this review, we summarize the latest therapies targeting mast cells as well as new drugs in clinical trials. In addition, we offer support for repurposing FDA-approved drugs to target mast cells in new ways. With a multitude of highly selective drugs available for cancer, autoimmunity, and metabolic disorders, drug repurposing offers optimism for the future of allergy therapy.


Asunto(s)
Hipersensibilidad , Mastocitos , Reposicionamiento de Medicamentos , Humanos , Inmunoglobulina E/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Mastocitos/metabolismo
19.
Compr Physiol ; 12(4): 3705-3730, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35950653

RESUMEN

The right ventricle (RV) and pulmonary arterial (PA) tree are inextricably linked, continually transferring energy back and forth in a process known as RV-PA coupling. Healthy organisms maintain this relationship in optimal balance by modulating RV contractility, pulmonary vascular resistance, and compliance to sustain RV-PA coupling through life's many physiologic challenges. Early in states of adaptation to cardiovascular disease-for example, in diastolic heart failure-RV-PA coupling is maintained via a multitude of cellular and mechanical transformations. However, with disease progression, these compensatory mechanisms fail and become maladaptive, leading to the often-fatal state of "uncoupling." Noninvasive imaging modalities, including echocardiography, magnetic resonance imaging, and computed tomography, allow us deeper insight into the state of coupling for an individual patient, providing for prognostication and potential intervention before uncoupling occurs. In this review, we discuss the physiologic foundations of RV-PA coupling, elaborate on the imaging techniques to qualify and quantify it, and correlate these fundamental principles with clinical scenarios in health and disease. © 2022 American Physiological Society. Compr Physiol 12: 1-26, 2022.


Asunto(s)
Hipertensión Pulmonar , Enfermedades Vasculares , Disfunción Ventricular Derecha , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Hipertensión Pulmonar/diagnóstico por imagen , Arteria Pulmonar/diagnóstico por imagen , Disfunción Ventricular Derecha/diagnóstico por imagen , Función Ventricular Derecha
20.
Pulm Circ ; 12(2): e12075, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35795494

RESUMEN

Protein kinase inhibitors (PKIs) have been implicated in pulmonary vascular toxicities including risk factors for at least three of the five World Health Organization groups of pulmonary hypertension (PH). These toxicities include direct drug-induced pulmonary arterial hypertension, an increase in cardiomyopathies, and an increase in interstitial lung disease. On- and off-target toxicities are common within multitargeted PKIs leading to cardiopulmonary toxicities. This review highlights the incidence, possible mechanisms, and management strategies for each group of possible PKI-induced PH. Future identification and clarification of protein kinase pathways for both mechanisms of toxicity and pathophysiology for PH could lead to improvements in patient care in oncology and pulmonary vascular diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...