Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Biol Psychiatry Glob Open Sci ; 3(4): 797-802, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37881554

RESUMEN

Background: Recent work from the Schizophrenia Exome Sequencing Meta-analysis (SCHEMA) consortium showed significant enrichment of ultrarare variants in schizophrenia cases. Family-based studies offer a unique opportunity to evaluate rare variants because risk in multiplex pedigrees is more likely to be influenced by the same collection of variants than an unrelated cohort. Methods: Here, we examine whole genome sequencing data from 35 individuals across 6 pedigrees multiply affected by schizophrenia. We applied a rigorous filtering pipeline to search for classes of protein-coding variants that cosegregated with disease status, and we examined these for evidence of enrichment in the SCHEMA dataset. Additionally, we applied a family-based consensus approach to call copy number variants and screen against a list of schizophrenia-associated risk variants. Results: We identified deleterious missense variants in 3 genes (ATP2B2, SLC25A28, and GSK3A) that cosegregated with disease in 3 of the pedigrees. In the SCHEMA, the gene ATP2B2 shows highly suggestive evidence for deleterious missense variants in schizophrenia cases (p = .000072). ATP2B2 is involved in intracellular calcium homeostasis, expressed in multiple brain tissue types, and predicted to be intolerant to loss-of-function and missense variants. Conclusions: We have identified genes that are likely to increase schizophrenia risk in 3 of the 6 pedigrees examined, the strongest evidence being for a gene involved in calcium homeostasis. Further work is required to examine other classes of variants that may be contributing to disease burden.

2.
Biol Res ; 56(1): 42, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37468985

RESUMEN

The human genome contains regions that cannot be adequately assembled or aligned using next generation short-read sequencing technologies. More than 2500 genes are known contain such 'dark' regions. In this study, we investigate the negative consequences of dark regions on gene discovery across a range of disease and study types, showing that dark regions are likely preventing researchers from identifying genetic variants relevant to human disease.


Asunto(s)
Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Genoma Humano/genética , Análisis de Secuencia de ADN
3.
J Appl Genet ; 64(2): 303-317, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36710277

RESUMEN

Autism spectrum disorder (ASD) is a heterogeneous group of early-onset neurodevelopmental disorders known to be highly heritable with a complex genetic architecture. Abnormal brain developmental trajectories that impact synaptic functioning, excitation-inhibition balance and brain connectivity are now understood to play a central role in ASD. Ongoing efforts to identify the genetic underpinnings still prove challenging, in part due to phenotypic and genetic heterogeneity.This review focuses on parent-of-origin effects (POEs), where the phenotypic effect of an allele depends on its parental origin. POEs include genomic imprinting, transgenerational effects, mitochondrial DNA, sex chromosomes and mutational transmission bias. The motivation for investigating these mechanisms in ASD has been driven by their known impacts on early brain development and brain functioning, in particular for the most well-documented POE, genomic imprinting. Moreover, imprinting is implicated in syndromes such as Angelman and Prader-Willi, which frequently share comorbid symptoms with ASD. In addition to other regions in the genome, this comprehensive review highlights the 15q11-q13 and 7q chromosomal regions as well as the mitochondrial DNA as harbouring the majority of currently identified POEs in ASD.


Asunto(s)
Síndrome de Angelman , Trastorno del Espectro Autista , Síndrome de Prader-Willi , Humanos , Trastorno del Espectro Autista/genética , Síndrome de Prader-Willi/genética , Síndrome de Angelman/genética , Encéfalo , Impresión Genómica , ADN Mitocondrial
4.
Brief Bioinform ; 22(5)2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33822888

RESUMEN

Next-generation sequencing studies are dependent on a high-quality reference genome for single nucleotide variant (SNV) calling. Although the two most recent builds of the human genome are widely used, position information is typically not directly comparable between them. Re-alignment gives the most accurate position information, but this procedure is often computationally expensive, and therefore, tools such as liftOver and CrossMap are used to convert data from one build to another. However, the positions of converted SNVs do not always match SNVs derived from aligned data, and in some instances, SNVs are known to change chromosome when converted. This is a significant problem when compiling sequencing resources or comparing results across studies. Here, we describe a novel algorithm to identify positions that are unstable when converting between human genome reference builds. These positions are detected independent of the conversion tools and are determined by the chain files, which provide a mapping of contiguous positions from one build to another. We also provide the list of unstable positions for converting between the two most commonly used builds GRCh37 and GRCh38. Pre-excluding SNVs at these positions, prior to conversion, results in SNVs that are stable to conversion. This simple procedure gives the same final list of stable SNVs as applying the algorithm and subsequently removing variants at unstable positions. This work highlights the care that must be taken when converting SNVs between genome builds and provides a simple method for ensuring higher confidence converted data. Unstable positions and algorithm code, available at https://github.com/cathaloruaidh/genomeBuildConversion.


Asunto(s)
Algoritmos , Conversión Génica , Genoma Humano , Polimorfismo de Nucleótido Simple , Navegador Web , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Proyecto Genoma Humano , Humanos , Secuenciación Completa del Genoma/métodos
5.
Sci Rep ; 10(1): 22255, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33335218

RESUMEN

MECP2 and its product, Methyl-CpG binding protein 2 (MeCP2), are mostly known for their association to Rett Syndrome (RTT), a rare neurodevelopmental disorder. Additional evidence suggests that MECP2 may underlie other neuropsychiatric and neurological conditions, and perhaps modulate common presentations and pathophysiology across disorders. To clarify the mechanisms of these interactions, we develop a method that uses the binding properties of MeCP2 to identify its targets, and in particular, the genes recognized by MeCP2 and associated to several neurological and neuropsychiatric disorders. Analysing mechanisms and pathways modulated by these genes, we find that they are involved in three main processes: neuronal transmission, immuno-reactivity, and development. Also, while the nervous system is the most relevant in the pathophysiology of the disorders, additional systems may contribute to MeCP2 action through its target genes. We tested our results with transcriptome analysis on Mecp2-null models and cells derived from a patient with RTT, confirming that the genes identified by our procedure are directly modulated by MeCP2. Thus, MeCP2 may modulate similar mechanisms in different pathologies, suggesting that treatments for one condition may be effective for related disorders.


Asunto(s)
Encefalopatías/genética , Proteína 2 de Unión a Metil-CpG/genética , Síndrome de Rett/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Encefalopatías/patología , Metilación de ADN/genética , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Ratones , Mutación/genética , Neuronas/metabolismo , Neuronas/patología , Síndrome de Rett/patología
6.
Mol Psychiatry ; 23(12): 2254-2265, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29880880

RESUMEN

Psychiatric disorders are a group of genetically related diseases with highly polygenic architectures. Genome-wide association analyses have made substantial progress towards understanding the genetic architecture of these disorders. More recently, exome- and whole-genome sequencing of cases and families have identified rare, high penetrant variants that provide direct functional insight. There remains, however, a gap in the heritability explained by these complementary approaches. To understand how multiple genetic variants combine to modify both severity and penetrance of a highly penetrant variant, we sequenced 48 whole genomes from a family with a high loading of psychiatric disorder linked to a balanced chromosomal translocation. The (1;11)(q42;q14.3) translocation directly disrupts three genes: DISC1, DISC2, DISC1FP and has been linked to multiple brain imaging and neurocognitive outcomes in the family. Using DNA sequence-level linkage analysis, functional annotation and population-based association, we identified common and rare variants in GRM5 (minor allele frequency (MAF) > 0.05), PDE4D (MAF > 0.2) and CNTN5 (MAF < 0.01) that may help explain the individual differences in phenotypic expression in the family. We suggest that whole-genome sequencing in large families will improve the understanding of the combined effects of the rare and common sequence variation underlying psychiatric phenotypes.


Asunto(s)
Trastornos Mentales/genética , Análisis de Secuencia de ADN/métodos , Adulto , Alelos , Contactinas/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Familia/psicología , Femenino , Frecuencia de los Genes/genética , Ligamiento Genético/genética , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas , Estudio de Asociación del Genoma Completo , Genómica , Genotipo , Humanos , Escala de Lod , Masculino , Trastornos Mentales/fisiopatología , Persona de Mediana Edad , Trastornos del Humor/genética , Herencia Multifactorial , Proteínas del Tejido Nervioso/genética , Linaje , Fenotipo , ARN Largo no Codificante , ARN Mensajero/genética , Receptor del Glutamato Metabotropico 5/genética , Proteínas Recombinantes de Fusión/genética , Translocación Genética
7.
NPJ Schizophr ; 4(1): 5, 2018 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-29555928

RESUMEN

Recent work has highlighted a possible role for altered epigenetic modifications, including differential DNA methylation, in susceptibility to psychiatric illness. Here, we investigate blood-based DNA methylation in a large family where a balanced translocation between chromosomes 1 and 11 shows genome-wide significant linkage to psychiatric illness. Genome-wide DNA methylation was profiled in whole-blood-derived DNA from 41 individuals using the Infinium HumanMethylation450 BeadChip (Illumina Inc., San Diego, CA). We found significant differences in DNA methylation when translocation carriers (n = 17) were compared to related non-carriers (n = 24) at 13 loci. All but one of the 13 significant differentially methylated positions (DMPs) mapped to the regions surrounding the translocation breakpoints. Methylation levels of five DMPs were associated with genotype at SNPs in linkage disequilibrium with the translocation. Two of the five genes harbouring significant DMPs, DISC1 and DUSP10, have been previously shown to be differentially methylated in schizophrenia. Gene Ontology analysis revealed enrichment for terms relating to neuronal function and neurodevelopment among the genes harbouring the most significant DMPs. Differentially methylated region (DMR) analysis highlighted a number of genes from the MHC region, which has been implicated in psychiatric illness previously through genetic studies. We show that inheritance of a translocation linked to major mental illness is associated with differential DNA methylation at loci implicated in neuronal development/function and in psychiatric illness. As genomic rearrangements are over-represented in individuals with psychiatric illness, such analyses may be valuable more widely in the study of these conditions.

8.
Ann Rheum Dis ; 77(3): 378-385, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29170203

RESUMEN

OBJECTIVES: To identify genetic determinants of susceptibility to clinical vertebral fractures, which is an important complication of osteoporosis. METHODS: Here we conduct a genome-wide association study in 1553 postmenopausal women with clinical vertebral fractures and 4340 controls, with a two-stage replication involving 1028 cases and 3762 controls. Potentially causal variants were identified using expression quantitative trait loci (eQTL) data from transiliac bone biopsies and bioinformatic studies. RESULTS: A locus tagged by rs10190845 was identified on chromosome 2q13, which was significantly associated with clinical vertebral fracture (P=1.04×10-9) with a large effect size (OR 1.74, 95% CI 1.06 to 2.6). Bioinformatic analysis of this locus identified several potentially functional SNPs that are associated with expression of the positional candidate genes TTL (tubulin tyrosine ligase) and SLC20A1 (solute carrier family 20 member 1). Three other suggestive loci were identified on chromosomes 1p31, 11q12 and 15q11. All these loci were novel and had not previously been associated with bone mineral density or clinical fractures. CONCLUSION: We have identified a novel genetic variant that is associated with clinical vertebral fractures by mechanisms that are independent of BMD. Further studies are now in progress to validate this association and evaluate the underlying mechanism.


Asunto(s)
Cromosomas Humanos Par 2/genética , Fracturas Osteoporóticas/genética , Fracturas de la Columna Vertebral/genética , Anciano , Anciano de 80 o más Años , Densidad Ósea/genética , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Posmenopausia , Sitios de Carácter Cuantitativo
9.
Transl Psychiatry ; 7(11): 1263, 2017 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-29187746

RESUMEN

Genome-wide association studies using genotype data have had limited success in the identification of variants associated with major depressive disorder (MDD). Haplotype data provide an alternative method for detecting associations between variants in weak linkage disequilibrium with genotyped variants and a given trait of interest. A genome-wide haplotype association study for MDD was undertaken utilising a family-based population cohort, Generation Scotland: Scottish Family Health Study (n = 18,773), as a discovery cohort with UK Biobank used as a population-based replication cohort (n = 25,035). Fine mapping of haplotype boundaries was used to account for overlapping haplotypes potentially tagging the same causal variant. Within the discovery cohort, two haplotypes exceeded genome-wide significance (P < 5 × 10-8) for an association with MDD. One of these haplotypes was nominally significant in the replication cohort (P < 0.05) and was located in 6q21, a region which has been previously associated with bipolar disorder, a psychiatric disorder that is phenotypically and genetically correlated with MDD. Several haplotypes with P < 10-7 in the discovery cohort were located within gene coding regions associated with diseases that are comorbid with MDD. Using such haplotypes to highlight regions for sequencing may lead to the identification of the underlying causal variants.


Asunto(s)
Cromosomas Humanos Par 6 , Trastorno Depresivo Mayor/genética , Estudio de Asociación del Genoma Completo/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Bancos de Muestras Biológicas , Cromosomas Humanos Par 6/genética , Estudios de Cohortes , Femenino , Haplotipos , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Escocia , Reino Unido , Adulto Joven
10.
NPJ Schizophr ; 2: 16024, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27602385

RESUMEN

Rare genetic variants of large effect can help elucidate the pathophysiology of brain disorders. Here we expand the clinical and genetic analyses of a family with a (1;11)(q42;q14.3) translocation multiply affected by major psychiatric illness and test the effect of the translocation on the structure and function of prefrontal, and temporal brain regions. The translocation showed significant linkage (LOD score 6.1) with a clinical phenotype that included schizophrenia, schizoaffective disorder, bipolar disorder, and recurrent major depressive disorder. Translocation carriers showed reduced cortical thickness in the left temporal lobe, which correlated with general psychopathology and positive psychotic symptom severity. They showed reduced gyrification in prefrontal cortex, which correlated with general psychopathology severity. Translocation carriers also showed significantly increased activation in the caudate nucleus on increasing verbal working memory load, as well as statistically significant reductions in the right dorsolateral prefrontal cortex glutamate concentrations. These findings confirm that the t(1;11) translocation is associated with a significantly increased risk of major psychiatric disorder and suggest a general vulnerability to psychopathology through altered cortical structure and function, and decreased glutamate levels.

11.
Genome Med ; 6(10): 79, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25400697

RESUMEN

Identifying functional non-coding variants is one of the greatest unmet challenges in genetics. To help address this, we introduce an R package, SuRFR, which integrates functional annotation and prior biological knowledge to prioritise candidate functional variants. SuRFR is publicly available, modular, flexible, fast, and simple to use. We demonstrate that SuRFR performs with high sensitivity and specificity and provide a widely applicable and scalable benchmarking dataset for model training and validation. Website: http://www.cgem.ed.ac.uk/resources/

12.
Cancer Res ; 70(6): 2538-47, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20215511

RESUMEN

We carried out a yeast two-hybrid screen using a BRCA1 bait composed of amino acids 1 to 1142 and identified BRD7 as a novel binding partner of BRCA1. This interaction was confirmed by coimmunoprecipitation of endogenous BRCA1 and BRD7 in T47D and HEK-293 cells. BRD7 is a bromodomain containing protein, which is a subunit of PBAF-specific Swi/Snf chromatin remodeling complexes. To determine the functional consequences of the BRCA1-BRD7 interaction, we investigated the role of BRD7 in BRCA1-dependent transcription using microarray-based expression profiling. We found that a variety of targets were coordinately regulated by BRCA1 and BRD7, such as estrogen receptor alpha (ERalpha). Depletion of BRD7 or BRCA1 in either T47D or MCF7 cells resulted in loss of expression of ERalpha at both the mRNA and protein level, and this loss of ERalpha was reflected in resistance to the antiestrogen drug fulvestrant. We show that BRD7 is present, along with BRCA1 and Oct-1, on the ESR1 promoter (the gene which encodes ERalpha). Depletion of BRD7 prevented the recruitment of BRCA1 and Oct-1 to the ESR1 promoter; however, it had no effect on the recruitment of the other Swi/Snf subunits BRG1, BAF155, and BAF57 or on RNA polymerase II recruitment. These results support a model whereby the regulation of ERalpha transcription by BRD7 is mediated by its recruitment of BRCA1 and Oct-1 to the ESR1 promoter.


Asunto(s)
Proteína BRCA1/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteína BRCA1/genética , Neoplasias de la Mama/tratamiento farmacológico , Proteínas Cromosómicas no Histona/genética , Moduladores de los Receptores de Estrógeno/farmacología , Receptor alfa de Estrógeno/biosíntesis , Receptor alfa de Estrógeno/genética , Femenino , Perfilación de la Expresión Génica , Genes BRCA1 , Humanos , Inmunoprecipitación , Factor 1 de Transcripción de Unión a Octámeros/genética , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Transcripción Genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...