Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
JCI Insight ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652558

RESUMEN

Chronic kidney disease (CKD) causes an accumulation of uremic metabolites that negatively impact skeletal muscle function. Tryptophan-derived uremic metabolites are agonists of the aryl hydrocarbon receptor (AHR) which has been shown to be activated in the blood of CKD patients. This study investigated the role of the AHR in skeletal muscle pathology of CKD. Compared to control participants with normal kidney function, AHR-dependent gene expression (CYP1A1 and CYP1B1) was significantly upregulated in skeletal muscle of patients with CKD (P=0.032) and the magnitude of AHR activation was inversely correlated with mitochondrial respiration (P<0.001). In mice with CKD, muscle mitochondrial oxidative phosphorylation (OXPHOS) was significantly impaired and strongly correlated with both the serum level of tryptophan-derived uremic metabolites and AHR activation. Muscle-specific deletion of the AHR significantly improved mitochondrial OXPHOS in male mice with the greatest uremic toxicity (CKD+probenecid) and abolished the relationship between uremic metabolites and OXPHOS. The uremic metabolite-AHR-mitochondrial axis in skeletal muscle was further confirmed using muscle-specific AHR knockdown in C57BL6J that harbour a high-affinity AHR allele, as well as ectopic viral expression of constitutively active mutant AHR in mice with normal renal function. Notably, OXPHOS changes in AHRmKO mice were only present when mitochondria were fueled by carbohydrates. Further analyses revealed that AHR activation in mice led to significant increases in Pdk4 expression (P<0.05) and phosphorylation of pyruvate dehydrogenase enzyme (P<0.05). These findings establish a uremic metabolite-AHR-Pdk4 axis in skeletal muscle that governs mitochondrial deficits in carbohydrate oxidation during CKD.

2.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38585832

RESUMEN

Background: The translation of promising therapies from pre-clinical models of hindlimb ischemia (HLI) to patients with peripheral artery disease (PAD) has been inadequate. While this failure is multifactorial, primary outcome measures in preclinical HLI models and clinical trials involving patients with PAD are not aligned well. For example, laser Doppler perfusion recovery measured under resting conditions is the most used outcome in HLI studies, whereas clinical trials involving patients with PAD primarily assess walking performance. Here, we sought to develop a 6-min limb function test for preclinical HLI models that assess muscular performance and hemodynamics congruently. Methods: We developed an in situ 6-min limb function test that involves repeated isotonic (shortening) contractions performed against a submaximal load. Continuous measurement of muscle blood flow was performed using laser Doppler flowmetry. Quantification of muscle power, work, and perfusion are obtained across the test. To assess the efficacy of this test, we performed HLI via femoral artery ligation on several mouse strains: C57BL6J, BALBc/J, and MCK-PGC1α (muscle-specific overexpression of PGC1α). Additional experiments were performed using an exercise intervention (voluntary wheel running) following HLI. Results: The 6-min limb function test was successful at detecting differences in limb function of C57BL6/J and BALBc/J mice subjected to HLI with effect sizes superior to laser Doppler perfusion recovery. C57BL6/J mice randomized to exercise therapy following HLI had smaller decline in muscle power, greater hyperemia, and performed more work across the 6-min limb function test compared to non-exercise controls with HLI. Mice with muscle-specific overexpression of PGC1α had no differences in perfusion recovery in resting conditions, but exhibited greater capillary density, increased muscle mass and absolute force levels, and performed more work across the 6-min limb function test compared to their wildtype littermates without the transgene. Conclusion: These results demonstrate the efficacy of the 6-min limb function test to detect differences in the response to HLI across several interventions including where traditional perfusion recovery, capillary density, and muscle strength measures were unable to detect therapeutic differences.

3.
Sci Rep ; 14(1): 8288, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594299

RESUMEN

Hand dysfunction is a common observation after arteriovenous fistula (AVF) creation for hemodialysis access and has a variable clinical phenotype; however, the underlying mechanism responsible is unclear. Grip strength changes are a common metric used to assess AVF-associated hand disability but has previously been found to poorly correlate with the hemodynamic perturbations post-AVF placement implicating other tissue-level factors as drivers of hand outcomes. In this study, we sought to test if expression of a mitochondrial targeted catalase (mCAT) in skeletal muscle could reduce AVF-related limb dysfunction in mice with chronic kidney disease (CKD). Male and female C57BL/6J mice were fed an adenine-supplemented diet to induce CKD prior to placement of an AVF in the iliac vascular bundle. Adeno-associated virus was used to drive expression of either a green fluorescent protein (control) or mCAT using the muscle-specific human skeletal actin (HSA) gene promoter prior to AVF creation. As expected, the muscle-specific AAV-HSA-mCAT treatment did not impact blood urea nitrogen levels (P = 0.72), body weight (P = 0.84), or central hemodynamics including infrarenal aorta and inferior vena cava diameters (P > 0.18) or velocities (P > 0.38). Hindlimb perfusion recovery and muscle capillary densities were also unaffected by AAV-HSA-mCAT treatment. In contrast to muscle mass and myofiber size which were not different between groups, both absolute and specific muscle contractile forces measured via a nerve-mediated in-situ preparation were significantly greater in AAV-HSA-mCAT treated mice (P = 0.0012 and P = 0.0002). Morphological analysis of the post-synaptic neuromuscular junction uncovered greater acetylcholine receptor cluster areas (P = 0.0094) and lower fragmentation (P = 0.0010) in AAV-HSA-mCAT treated mice. Muscle mitochondrial oxidative phosphorylation was not different between groups, but AAV-HSA-mCAT treated mice had lower succinate-fueled mitochondrial hydrogen peroxide emission compared to AAV-HSA-GFP mice (P < 0.001). In summary, muscle-specific scavenging of mitochondrial hydrogen peroxide significantly improves neuromotor function in mice with CKD following AVF creation.


Asunto(s)
Fístula Arteriovenosa , Derivación Arteriovenosa Quirúrgica , Fallo Renal Crónico , Insuficiencia Renal Crónica , Humanos , Masculino , Femenino , Animales , Ratones , Catalasa , Peróxido de Hidrógeno , Ratones Endogámicos C57BL , Insuficiencia Renal Crónica/terapia , Diálisis Renal , Fuerza Muscular , Fallo Renal Crónico/terapia
4.
JCI Insight ; 9(4)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385748

RESUMEN

BACKGROUNDWhile the benefits of statin therapy on atherosclerotic cardiovascular disease are clear, patients often experience mild to moderate skeletal myopathic symptoms, the mechanism for which is unknown. This study investigated the potential effect of high-dose atorvastatin therapy on skeletal muscle mitochondrial function and whole-body aerobic capacity in humans.METHODSEight overweight (BMI, 31.9 ± 2.0) but otherwise healthy sedentary adults (4 females, 4 males) were studied before (day 0) and 14, 28, and 56 days after initiating atorvastatin (80 mg/d) therapy.RESULTSMaximal ADP-stimulated respiration, measured in permeabilized fiber bundles from muscle biopsies taken at each time point, declined gradually over the course of atorvastatin treatment, resulting in > 30% loss of skeletal muscle mitochondrial oxidative phosphorylation capacity by day 56. Indices of in vivo muscle oxidative capacity (via near-infrared spectroscopy) decreased by 23% to 45%. In whole muscle homogenates from day 0 biopsies, atorvastatin inhibited complex III activity at midmicromolar concentrations, whereas complex IV activity was inhibited at low nanomolar concentrations.CONCLUSIONThese findings demonstrate that high-dose atorvastatin treatment elicits a striking progressive decline in skeletal muscle mitochondrial respiratory capacity, highlighting the need for longer-term dose-response studies in different patient populations to thoroughly define the effect of statin therapy on skeletal muscle health.FUNDINGNIH R01 AR071263.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Enfermedades Musculares , Masculino , Adulto , Femenino , Humanos , Atorvastatina/farmacología , Atorvastatina/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Mitocondrias , Enfermedades Musculares/metabolismo
5.
J Cachexia Sarcopenia Muscle ; 15(2): 646-659, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38333944

RESUMEN

BACKGROUND: Accumulating evidence has demonstrated that chronic tobacco smoking directly contributes to skeletal muscle dysfunction independent of its pathological impact to the cardiorespiratory systems. The mechanisms underlying tobacco smoke toxicity in skeletal muscle are not fully resolved. In this study, the role of the aryl hydrocarbon receptor (AHR), a transcription factor known to be activated with tobacco smoke, was investigated. METHODS: AHR related gene (mRNA) expression was quantified in skeletal muscle from adult controls and patients with chronic obstructive pulmonary disease (COPD), as well as mice with and without cigarette smoke exposure. Utilizing both skeletal muscle-specific AHR knockout mice exposed to chronic repeated (5 days per week for 16 weeks) cigarette smoke and skeletal muscle-specific expression of a constitutively active mutant AHR in healthy mice, a battery of assessments interrogating muscle size, contractile function, mitochondrial energetics, and RNA sequencing were employed. RESULTS: Skeletal muscle from COPD patients (N = 79, age = 67.0 ± 8.4 years) had higher levels of AHR (P = 0.0451) and CYP1B1 (P < 0.0001) compared to healthy adult controls (N = 16, age = 66.5 ± 6.5 years). Mice exposed to cigarette smoke displayed higher expression of Ahr (P = 0.008), Cyp1b1 (P < 0.0001), and Cyp1a1 (P < 0.0001) in skeletal muscle compared to air controls. Cigarette smoke exposure was found to impair skeletal muscle mitochondrial oxidative phosphorylation by ~50% in littermate controls (Treatment effect, P < 0.001), which was attenuated by deletion of the AHR in muscle in male (P = 0.001), but not female, mice (P = 0.37), indicating there are sex-dependent pathological effects of smoking-induced AHR activation in skeletal muscle. Viral mediated expression of a constitutively active mutant AHR in the muscle of healthy mice recapitulated the effects of cigarette smoking by decreasing muscle mitochondrial oxidative phosphorylation by ~40% (P = 0.003). CONCLUSIONS: These findings provide evidence linking chronic AHR activation secondary to cigarette smoke exposure to skeletal muscle bioenergetic deficits in male, but not female, mice. AHR activation is a likely contributor to the decline in muscle oxidative capacity observed in smokers and AHR antagonism may provide a therapeutic avenue aimed to improve muscle function in COPD.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Contaminación por Humo de Tabaco , Anciano , Animales , Humanos , Masculino , Ratones , Persona de Mediana Edad , Mitocondrias/metabolismo , Músculo Esquelético/patología , Nicotiana , Enfermedad Pulmonar Obstructiva Crónica/patología , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Fumar/efectos adversos , Fumar Tabaco , Femenino
6.
Artículo en Inglés | MEDLINE | ID: mdl-37694554

RESUMEN

BACKGROUND: The relationship between amino acids, B vitamins, and their metabolites with D3-creatine (D3Cr) dilution muscle mass, a more direct measure of skeletal muscle mass, has not been investigated. We aimed to assess associations of plasma metabolites with D3Cr muscle mass, as well as muscle strength and physical performance in older men from the Osteoporotic Fractures in Men cohort study. METHODS: Out of 1 425 men (84.2 ±â€…4.1 years), men with the lowest D3Cr muscle mass (n = 100), slowest walking speed (n = 100), lowest grip strength (n = 100), and a random sample (n = 200) serving as a comparison group to the low groups were included. Metabolites were analyzed using liquid chromatography-tandem mass spectrometry. Metabolite differences between the low groups and random sample and their relationships with the muscle outcomes adjusted for confounders and multiple comparisons were assessed using t-test/Mann-Whitney-Wilcoxon and partial correlations, respectively. RESULTS: For D3Cr muscle mass, significant biomarkers (p < .001) with ≥10% fold difference and largest partial correlations were tryptophan (Trp; r = 0.31), kynurenine (Kyn)/Trp; r = -0.27), nicotinamide (Nam)/quinolinic acid (Quin; r = 0.21), and alpha-hydroxy-5-methyl-tetrahydrofolate (hm-THF; r = -0.25). For walking speed, hm-THF, Nam/Quin, and Quin had the largest significance and fold difference, whereas valine (r = 0.17), Trp (r = 0.17), HKyn/Xant (r = -0.20), neopterin (r = -0.17), 5-methyl-THF (r = -0.20), methylated folate (r = -0.21), and thiamine (r = -0.18) had the strongest correlations. Only hm-THF was correlated with grip strength (r = -0.21) and differed between the low group and the random sample. CONCLUSIONS: Future interventions focusing on how the Trp metabolic pathway or hm-THF influences D3Cr muscle mass and physical performance declines in older adults are warranted.


Asunto(s)
Creatina , Fuerza Muscular , Masculino , Humanos , Anciano , Estudios de Cohortes , Fuerza Muscular/fisiología , Fuerza de la Mano/fisiología , Rendimiento Físico Funcional , Músculos , Nutrientes , Músculo Esquelético
7.
Am J Physiol Regul Integr Comp Physiol ; 326(2): R160-R175, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38047316

RESUMEN

The effect of exertional heat stroke (EHS) exposure on skeletal muscles is incompletely understood. Muscle weakness is an early symptom of EHS but is not considered a major target of multiorgan injury. Previously, in a preclinical mouse model of EHS, we observed the vulnerability of limb muscles to a second EHS exposure, suggesting hidden processes contributing to declines in muscle resilience. Here, we evaluated the possible molecular origins of EHS-induced declines in muscle resilience. Female C57BL/6 mice [total n = 56; 28/condition, i.e., EHS and exercise control (EXC)] underwent forced wheel running at 37.5°C/40% relative humidity until symptom limitation (unconsciousness). EXC mice exercised identically at room temperature (22-23°C). After 1 mo of recovery, the following were assessed: 1) specific force and caffeine-induced contracture in soleus (SOL) and extensor digitorum longus (EDL) muscles; 2) transcriptome and DNA methylome responses in gastrocnemius (GAST); and 3) primary satellite cell function (proliferation and differentiation). There were no differences in specific force in either SOL or EDL from EXC. Only EHS solei exhibited lower caffeine sensitivity. EHS GAST exhibited higher RNA expression of genes encoding structural proteins of slow fibers, heat shock proteins, and myogenesis. A total of ∼2,500 differentially methylated regions of DNA that could potentially affect many cell functions were identified. Primary satellite cells exhibited suppressed proliferation rates but normal differentiation responses. Results demonstrate long-term changes in skeletal muscles 1 mo after EHS that could contribute to declines in muscle resilience. Skeletal muscle may join other, more recognized tissues considered vulnerable to long-term effects of EHS.NEW & NOTEWORTHY Exertional heat stroke (EHS) in mice induces long-term molecular and functional changes in limb muscle that could reflect a loss of "resilience" to further stress. The phenotype was characterized by altered caffeine sensitivity and suppressed satellite cell proliferative potential. This was accompanied by changes in gene expression and DNA methylation consistent with ongoing muscle remodeling and stress adaptation. We propose that EHS may induce a prolonged vulnerability of skeletal muscle to further stress or injury.


Asunto(s)
Cafeína , Golpe de Calor , Ratones , Femenino , Animales , Actividad Motora , Ratones Endogámicos C57BL , Músculo Esquelético/fisiología , Golpe de Calor/genética , Transcriptoma , Epigénesis Genética
8.
Am J Physiol Heart Circ Physiol ; 326(1): H44-H60, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37921663

RESUMEN

Chronic kidney disease (CKD) is a strong risk factor for peripheral artery disease (PAD) that is associated with worsened clinical outcomes. CKD leads to the accumulation of tryptophan metabolites that are associated with adverse limb events in PAD and are ligands of the aryl hydrocarbon receptor (AHR), which may regulate ischemic angiogenesis. To test if endothelial cell-specific deletion of the AHR (AHRecKO) alters ischemic angiogenesis and limb function in mice with CKD subjected to femoral artery ligation. Male AHRecKO mice with CKD displayed better limb perfusion recovery and enhanced ischemic angiogenesis compared with wild-type mice with CKD. However, the improved limb perfusion did not result in better muscle performance. In contrast to male mice, deletion of the AHR in female mice with CKD had no impact on perfusion recovery or angiogenesis. With the use of primary endothelial cells from male and female mice, treatment with indoxyl sulfate uncovered sex-dependent differences in AHR activating potential and RNA sequencing revealed wide-ranging sex differences in angiogenic signaling pathways. Endothelium-specific deletion of the AHR improved ischemic angiogenesis in male, but not female, mice with CKD. There are sex-dependent differences in Ahr activating potential within endothelial cells that are independent of sex hormones.NEW & NOTEWORTHY This study provides novel insights into the mechanisms by which chronic kidney disease worsens ischemic limb outcomes in an experimental model of peripheral artery disease. Deletion of the aryl hydrocarbon receptor (AHR) in the endothelium improved ischemic angiogenesis suggesting that AHR inhibition could be a viable therapeutic target; however, this effect was only observed in male mice. Subsequent analysis in primary endothelial cells reveals sex differences in Ahr activating potential independent of sex hormones.


Asunto(s)
Enfermedad Arterial Periférica , Insuficiencia Renal Crónica , Masculino , Femenino , Ratones , Animales , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Células Endoteliales/metabolismo , Isquemia , Enfermedad Arterial Periférica/metabolismo , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Hormonas Esteroides Gonadales
9.
Circ Res ; 133(10): 791-809, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37823262

RESUMEN

BACKGROUND: Lower extremity peripheral artery disease (PAD) is a growing epidemic with limited effective treatment options. Here, we provide a single-nuclei atlas of PAD limb muscle to facilitate a better understanding of the composition of cells and transcriptional differences that comprise the diseased limb muscle. METHODS: We obtained gastrocnemius muscle specimens from 20 patients with PAD and 12 non-PAD controls. Nuclei were isolated and single-nuclei RNA-sequencing was performed. The composition of nuclei was characterized by iterative clustering via principal component analysis, differential expression analysis, and the use of known marker genes. Bioinformatics analysis was performed to determine differences in gene expression between PAD and non-PAD nuclei, as well as subsequent analysis of intercellular signaling networks. Additional histological analyses of muscle specimens accompany the single-nuclei RNA-sequencing atlas. RESULTS: Single-nuclei RNA-sequencing analysis indicated a fiber type shift with patients with PAD having fewer type I (slow/oxidative) and more type II (fast/glycolytic) myonuclei compared with non-PAD, which was confirmed using immunostaining of muscle specimens. Myonuclei from PAD displayed global upregulation of genes involved in stress response, autophagy, hypoxia, and atrophy. Subclustering of myonuclei also identified populations that were unique to PAD muscle characterized by metabolic dysregulation. PAD muscles also displayed unique transcriptional profiles and increased diversity of transcriptomes in muscle stem cells, regenerating myonuclei, and fibro-adipogenic progenitor cells. Analysis of intercellular communication networks revealed fibro-adipogenic progenitors as a major signaling hub in PAD muscle, as well as deficiencies in angiogenic and bone morphogenetic protein signaling which may contribute to poor limb function in PAD. CONCLUSIONS: This reference single-nuclei RNA-sequencing atlas provides a comprehensive analysis of the cell composition, transcriptional signature, and intercellular communication pathways that are altered in the PAD condition.


Asunto(s)
Músculo Esquelético , Enfermedad Arterial Periférica , Humanos , Músculo Esquelético/metabolismo , Enfermedad Arterial Periférica/metabolismo , Extremidad Inferior , ARN/metabolismo
10.
Sci Rep ; 13(1): 16811, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798334

RESUMEN

For end-stage kidney disease (ESKD) patients, hemodialysis requires durable vascular access which is often surgically created using an arteriovenous fistula (AVF). However, some ESKD patients that undergo AVF placement develop access-related hand dysfunction (ARHD) through unknown mechanisms. In this study, we sought to determine if changes in the serum metabolome could distinguish ESKD patients that develop ARHD from those that have normal hand function following AVF creation. Forty-five ESKD patients that underwent first-time AVF creation were included in this study. Blood samples were obtained pre-operatively and 6-weeks post-operatively and metabolites were extracted and analyzed using nuclear magnetic resonance spectroscopy. Patients underwent thorough examination of hand function at both timepoints using the following assessments: grip strength manometry, dexterity, sensation, motor and sensory nerve conduction testing, hemodynamics, and the Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire. Nineteen of the forty-five patients displayed overt weakness using grip strength manometry (P < 0.0001). Unfortunately, the serum metabolome was indistinguishable between patients with and without weakness following AVF surgery. However, a significant correlation was found between the change in tryptophan levels and the change in grip strength suggesting a possible role of tryptophan-derived uremic metabolites in post-AVF hand-associated weakness. Compared to grip strength, changes in dexterity and sensation were smaller than those observed in grip strength, however, post-operative decreases in phenylalanine, glycine, and alanine were unique to patients that developed signs of motor or sensory disability following AVF creation.


Asunto(s)
Fístula Arteriovenosa , Derivación Arteriovenosa Quirúrgica , Fallo Renal Crónico , Humanos , Lipidómica , Triptófano , Extremidad Superior , Fallo Renal Crónico/terapia , Diálisis Renal/efectos adversos , Derivación Arteriovenosa Quirúrgica/efectos adversos , Derivación Arteriovenosa Quirúrgica/métodos , Estudios Retrospectivos , Resultado del Tratamiento
11.
Br J Dermatol ; 190(1): 94-104, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37615507

RESUMEN

BACKGROUND: Lymphatic filariasis (LF) is a neglected tropical disease presenting mainly as lymphoedema (elephantiasis). At present, LF is not effectively treated. Integrative medicine (IM) treatment for lymphoedema uses a combination of Indian traditional medicine, Ayurveda, alongside yoga exercises, compression therapy, antibiotics and antifungal treatments, providing a useful combination where resources are limited and different practices are in use. OBJECTIVES: To assess the effectiveness of the IM in the existing clinical practice of lower-limb lymphoedema management and to determine whether the treatment outcomes align with the World Health Organization (WHO) global goal of LF management. METHODS: Institutional data from electronic medical records of all 1698 patients with LF between 2010 and 2019 were retrospectively analysed using pre- and post-treatment comparisons and the National Institute for Health and Care Excellence guidelines for clinical audit. The primary treatment outcomes evaluated were limb volume, bacterial entry points (BEEPs), episodes of cellulitis, and health-related quality of life (HRQoL). Secondary outcomes included the influence of the patient's sex, duration of illness, education and employment status on volume reduction. Multiple regression analysis, t-test, χ2-test, analysis of variance, Mann-Whitney U-test and the Kruskal-Wallis test were used to assess the association between IM and patients' treatment outcomes. RESULTS: Limb volume reduced by 24.5% [95% confidence interval (CI) 22.47-26.61; n = 1660] following an intensive supervised care period (mean 14.84 days, n = 1660). Limb volume further reduced by 1.42% (95% CI 0.76-2.07; n = 1259) at the first follow-up visit (mean 81.45 days), and by 2.3% between the first and second follow-up visits (mean 231.32 days) (95% CI 1.26-3.34; n = 796). BEEPs were reduced upon follow-up; excoriations (78.4%) and intertrigo (26.7%) were reduced at discharge and further improvements was achieved at the follow-up visits. In total, 4% of patients exhibited new BEEPs at the first follow-up [eczema (3.9%), folliculitis (6.5%), excoriations (11.9%) and intertrigo (15.4%); 4 of 7 BEEPs were recorded]. HRQoL, measured using the disease-specific Lymphatic Filariasis Specific Quality of Life Questionnaire, showed an average score of 73.9 on admission, which increased by 17.8 at the first follow-up and 18.6 at the second follow-up. No patients developed new cellulitis episodes at the first follow-up, and only five patients (5.3%) developed new episodes of cellulitis at the second follow-up. CONCLUSIONS: IM for lower-limb lymphoedema successfully reduces limb volume and episodes of cellulitis, and also reduces BEEPs, leading to improved HRQoL. IM aligns with the LF treatment goals of the WHO and is a low-cost, predominantly self-care management protocol. IM has the potential to change care models and improve the lives of patients with lymphoedema.


Asunto(s)
Filariasis Linfática , Medicina Integrativa , Intertrigo , Linfedema , Humanos , Filariasis Linfática/complicaciones , Filariasis Linfática/terapia , Calidad de Vida , Celulitis (Flemón) , Autocuidado/métodos , Estudios Retrospectivos , Linfedema/terapia , Intertrigo/complicaciones
12.
bioRxiv ; 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37546909

RESUMEN

Rationale: Chronic kidney disease (CKD) is a strong risk factor for peripheral artery disease (PAD) that is associated with worsened clinical outcomes. CKD leads to accumulation of tryptophan metabolites that associate with adverse limb events in PAD and are ligands of the aryl hydrocarbon receptor (AHR) which may regulate ischemic angiogenesis. Objectives: To test if endothelial cell-specific deletion of the AHR (AHRecKO) alters ischemic angiogenesis and limb function in mice with CKD subjected to femoral artery ligation. Findings: Male AHRecKO mice with CKD displayed better limb perfusion recovery and enhanced ischemic angiogenesis compared to wildtype mice with CKD. However, the improved limb perfusion did not result in better muscle performance. In contrast to male mice, deletion of the AHR in female mice with CKD had no impact on perfusion recovery or angiogenesis. Using primary endothelial cells from male and female mice, treatment with indoxyl sulfate uncovered sex-dependent differences in AHR activating potential and RNA sequencing revealed wide ranging sex-differences in angiogenic signaling pathways. Conclusion: Endothelium-specific deletion of the AHR improved ischemic angiogenesis in male, but not female, mice with CKD. There are sex-dependent differences in Ahr activating potential within endothelial cells that are independent of sex hormones.

13.
JACC Basic Transl Sci ; 8(6): 702-719, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37426532

RESUMEN

Lower-extremity peripheral arterial disease (PAD) has increased in prevalence, yet therapeutic development has remained stagnant. Skeletal muscle health and function has been strongly linked to quality of life and medical outcomes in patients with PAD. Using a rodent model of PAD, this study demonstrates that treatment of the ischemic limb with insulin-like growth factor (IGF)-1 significantly increases muscle size and strength without improving limb hemodynamics. Interestingly, the effect size of IGF1 therapy was larger in female mice than in male mice, highlighting the need to carefully examine sex-dependent effects in experimental PAD therapies.

14.
Am J Physiol Renal Physiol ; 325(3): F271-F282, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37439200

RESUMEN

The objective of the present study was to determine if treatment with N-acetylcysteine (NAC) could reduce access-related limb dysfunction in mice. Male and female C57BL6J mice were fed an adenine-supplemented diet to induce chronic kidney disease (CKD) prior to the surgical creation of an arteriovenous fistula (AVF) in the iliac vascular bundle. AVF creation significantly increased peak aortic and infrarenal vena cava blood flow velocities, but NAC treatment had no significant impact, indicating that fistula maturation was not impacted by NAC treatment. Hindlimb muscle and paw perfusion recovery and muscle capillary density in the AVF limb were unaffected by NAC treatment. However, NAC treatment significantly increased the mass of the tibialis anterior (P = 0.0120) and soleus (P = 0.0452) muscles post-AVF. There was a significant main effect of NAC treatment on hindlimb grip strength at postoperative day 12 (POD 12) (P = 0.0003), driven by significantly higher grip strength in both male (P = 0.0273) and female (P = 0.0031) mice treated with NAC. There was also a significant main effect of NAC treatment on the walking speed at postoperative day 12 (P = 0.0447), and post hoc testing revealed an improvement in NAC-treated male mice (P = 0.0091). The area of postsynaptic acetylcholine receptors (P = 0.0263) and motor endplates (P = 0.0240) was also increased by NAC treatment. Interestingly, hindlimb skeletal muscle mitochondrial oxidative phosphorylation trended higher in NAC-treated female mice but was not statistically significant (P = 0.0973). Muscle glutathione levels and redox status were not significantly impacted by NAC treatment in either sex. In summary, NAC treatment attenuated some aspects of neuromotor pathology in mice with chronic kidney disease following AVF creation.NEW & NOTEWORTHY Hemodialysis via autogenous arteriovenous fistula (AVF) is the preferred first-line modality for renal replacement therapy in patients with end-stage kidney disease. However, patients undergoing AVF surgery frequently experience a spectrum of hand disability symptoms postsurgery including weakness and neuromotor dysfunction. Unfortunately, no treatment is currently available to prevent or mitigate these symptoms. Here, we provide evidence that daily N-acetylcysteine supplementation can attenuate some aspects of limb neuromotor function in a preclinical mouse model of AVF.


Asunto(s)
Fístula Arteriovenosa , Derivación Arteriovenosa Quirúrgica , Fallo Renal Crónico , Insuficiencia Renal Crónica , Masculino , Femenino , Animales , Ratones , Acetilcisteína/farmacología , Diálisis Renal , Insuficiencia Renal Crónica/terapia , Insuficiencia Renal Crónica/etiología , Fallo Renal Crónico/terapia , Derivación Arteriovenosa Quirúrgica/efectos adversos , Estudios Retrospectivos
15.
bioRxiv ; 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37292677

RESUMEN

Chronic kidney disease (CKD) accelerates the development of atherosclerosis, decreases muscle function, and increases the risk of amputation or death in patients with peripheral artery disease (PAD). However, the cellular and physiological mechanisms underlying this pathobiology are ill-defined. Recent work has indicated that tryptophan-derived uremic toxins, many of which are ligands for the aryl hydrocarbon receptor (AHR), are associated with adverse limb outcomes in PAD. We hypothesized that chronic AHR activation, driven by the accumulation of tryptophan-derived uremic metabolites, may mediate the myopathic condition in the presence of CKD and PAD. Both PAD patients with CKD and mice with CKD subjected to femoral artery ligation (FAL) displayed significantly higher mRNA expression of classical AHR-dependent genes ( Cyp1a1 , Cyp1b1 , and Aldh3a1 ) when compared to either muscle from the PAD condition with normal renal function ( P <0.05 for all three genes) or non-ischemic controls. Skeletal-muscle-specific AHR deletion in mice (AHR mKO ) significantly improved limb muscle perfusion recovery and arteriogenesis, preserved vasculogenic paracrine signaling from myofibers, increased muscle mass and contractile function, as well as enhanced mitochondrial oxidative phosphorylation and respiratory capacity in an experimental model of PAD/CKD. Moreover, viral-mediated skeletal muscle-specific expression of a constitutively active AHR in mice with normal kidney function exacerbated the ischemic myopathy evidenced by smaller muscle masses, reduced contractile function, histopathology, altered vasculogenic signaling, and lower mitochondrial respiratory function. These findings establish chronic AHR activation in muscle as a pivotal regulator of the ischemic limb pathology in PAD. Further, the totality of the results provide support for testing of clinical interventions that diminish AHR signaling in these conditions.

16.
Circ Res ; 133(2): 158-176, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37325935

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) accelerates the development of atherosclerosis, decreases muscle function, and increases the risk of amputation or death in patients with peripheral artery disease (PAD). However, the mechanisms underlying this pathobiology are ill-defined. Recent work has indicated that tryptophan-derived uremic solutes, which are ligands for AHR (aryl hydrocarbon receptor), are associated with limb amputation in PAD. Herein, we examined the role of AHR activation in the myopathy of PAD and CKD. METHODS: AHR-related gene expression was evaluated in skeletal muscle obtained from mice and human PAD patients with and without CKD. AHRmKO (skeletal muscle-specific AHR knockout) mice with and without CKD were subjected to femoral artery ligation, and a battery of assessments were performed to evaluate vascular, muscle, and mitochondrial health. Single-nuclei RNA sequencing was performed to explore intercellular communication. Expression of the constitutively active AHR was used to isolate the role of AHR in mice without CKD. RESULTS: PAD patients and mice with CKD displayed significantly higher mRNA expression of classical AHR-dependent genes (Cyp1a1, Cyp1b1, and Aldh3a1) when compared with either muscle from the PAD condition with normal renal function (P<0.05 for all 3 genes) or nonischemic controls. AHRmKO significantly improved limb perfusion recovery and arteriogenesis, preserved vasculogenic paracrine signaling from myofibers, increased muscle mass and strength, as well as enhanced mitochondrial function in an experimental model of PAD/CKD. Moreover, viral-mediated skeletal muscle-specific expression of a constitutively active AHR in mice with normal kidney function exacerbated the ischemic myopathy evidenced by smaller muscle masses, reduced contractile function, histopathology, altered vasculogenic signaling, and lower mitochondrial respiratory function. CONCLUSIONS: These findings establish AHR activation in muscle as a pivotal regulator of the ischemic limb pathology in CKD. Further, the totality of the results provides support for testing of clinical interventions that diminish AHR signaling in these conditions.


Asunto(s)
Enfermedades Musculares , Enfermedad Arterial Periférica , Insuficiencia Renal Crónica , Animales , Humanos , Ratones , Isquemia/metabolismo , Ratones Noqueados , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo , Enfermedad Arterial Periférica/genética , Enfermedad Arterial Periférica/metabolismo , Receptores de Hidrocarburo de Aril/genética , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo
17.
JCI Insight ; 8(10)2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37097749

RESUMEN

Patients with peripheral artery disease (PAD) and diabetes compose a high-risk population for development of critical limb ischemia (CLI) and amputation, although the underlying mechanisms remain poorly understood. Comparison of dysregulated microRNAs from diabetic patients with PAD and diabetic mice with limb ischemia revealed the conserved microRNA, miR-130b-3p. In vitro angiogenic assays demonstrated that miR-130b rapidly promoted proliferation, migration, and sprouting in endothelial cells (ECs), whereas miR-130b inhibition exerted antiangiogenic effects. Local delivery of miR-130b mimics into ischemic muscles of diabetic mice (db/db) following femoral artery ligation (FAL) promoted revascularization by increasing angiogenesis and markedly improved limb necrosis and amputation. RNA-Seq and gene set enrichment analysis from miR-130b-overexpressing ECs revealed the BMP/TGF-ß signaling pathway as one of the top dysregulated pathways. Accordingly, overlapping downregulated transcripts from RNA-Seq and miRNA prediction algorithms identified that miR-130b directly targeted and repressed the TGF-ß superfamily member inhibin-ß-A (INHBA). miR-130b overexpression or siRNA-mediated knockdown of INHBA induced IL-8 expression, a potent angiogenic chemokine. Lastly, ectopic delivery of silencer RNAs (siRNA) targeting Inhba in db/db ischemic muscles following FAL improved revascularization and limb necrosis, recapitulating the phenotype of miR-130b delivery. Taken together, a miR-130b/INHBA signaling axis may provide therapeutic targets for patients with PAD and diabetes at risk of developing CLI.


Asunto(s)
Diabetes Mellitus Experimental , MicroARNs , Animales , Humanos , Ratones , Isquemia Crónica que Amenaza las Extremidades , Células Endoteliales/metabolismo , Inhibinas , Isquemia/genética , MicroARNs/metabolismo , Necrosis , ARN Interferente Pequeño , Transducción de Señal , Factor de Crecimiento Transformador beta
18.
Free Radic Biol Med ; 194: 23-32, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436728

RESUMEN

Patients with heart failure with reduced ejection fraction (HFrEF) experience diaphragm weakness that contributes to the primary disease symptoms of fatigue, dyspnea, and exercise intolerance. Weakness in the diaphragm is related to excessive production of reactive oxygen species (ROS), but the exact source of ROS remains unknown. NAD(P)H Oxidases (Nox), particularly the Nox2 and 4 isoforms, are important sources of ROS within skeletal muscle that contribute to optimal cell function. There are reports of increased Nox activity in the diaphragm of patients and animal models of HFrEF, implicating these complexes as possible sources of diaphragm dysfunction in HFrEF. To investigate the role of these proteins on diaphragm weakness in HFrEF, we generated inducible skeletal muscle specific knockouts of Nox2 or Nox4 using the Cre-Lox system and assessed diaphragm function in a mouse model of HFrEF induced by myocardial infarction. Diaphragm maximal specific force measured in vitro was depressed by ∼20% with HFrEF. Skeletal muscle knockout of Nox4 provided full protection against the loss of maximal force (p < 0.01), while the knockout of Nox2 provided partial protection (7% depression, p < 0.01). Knockout of Nox2 from skeletal myofibers improved survival from 50 to 80% following myocardial infarction (p = 0.026). Our findings show an important role for skeletal muscle NAD(P)H Oxidases contributing to loss of diaphragm maximal force in HFrEF, along with systemic pathophysiological responses following myocardial infarction.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Disfunción Ventricular Izquierda , Animales , Ratones , Diafragma , Insuficiencia Cardíaca/metabolismo , Ratones Noqueados , Músculo Esquelético/metabolismo , Infarto del Miocardio/metabolismo , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Volumen Sistólico/fisiología , Disfunción Ventricular Izquierda/metabolismo
19.
NMR Biomed ; 36(3): e4869, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36331178

RESUMEN

Rodent models of Duchenne muscular dystrophy (DMD) often do not recapitulate the severity of muscle wasting and resultant fibro-fatty infiltration observed in DMD patients. Having recently documented severe muscle wasting and fatty deposition in two preclinical models of muscular dystrophy (Dysferlin-null and mdx mice) through apolipoprotein E (ApoE) gene deletion without and with cholesterol-, triglyceride-rich Western diet supplementation, we sought to determine whether magnetic resonance imaging and spectroscopy (MRI and MRS, respectively) could be used to detect, characterize, and compare lipid deposition in mdx-ApoE knockout with mdx mice in a diet-dependent manner. MRI revealed that both mdx and mdx-ApoE mice exhibited elevated proton relaxation time constants (T2 ) in their lower hindlimbs irrespective of diet, indicating both chronic muscle damage and fatty tissue deposition. The mdx-ApoE mice on a Western diet (mdx-ApoEW ) presented with greatest fatty tissue infiltration in the posterior compartment of the hindlimb compared with other groups, as detected by MRI/MRS. High-resolution magic angle spinning confirmed elevated lipid deposition in the posterior compartments of mdx-ApoEW mice in vivo and ex vivo, respectively. In conclusion, the mdx-ApoEW model recapitulates some of the extreme fatty tissue deposition observed clinically in DMD muscle but typically absent in mdx mice. This preclinical model will help facilitate the development of new imaging modalities directly relevant to the image contrast generated in DMD, and help to refine MR-based biomarkers and their relationship to tissue structure and disease progression.


Asunto(s)
Distrofia Muscular de Duchenne , Animales , Ratones , Distrofia Muscular de Duchenne/diagnóstico por imagen , Distrofia Muscular de Duchenne/patología , Ratones Endogámicos mdx , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Colesterol , Apolipoproteínas E , Modelos Animales de Enfermedad
20.
Antioxid Redox Signal ; 38(4-6): 318-337, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36245209

RESUMEN

Significance: An estimated 700 million people globally suffer from chronic kidney disease (CKD). In addition to increasing cardiovascular disease risk, CKD is a catabolic disease that results in a loss of muscle mass and function, which are strongly associated with mortality and a reduced quality of life. Despite the importance of muscle health and function, there are no treatments available to prevent or attenuate the myopathy associated with CKD. Recent Advances: Recent studies have begun to unravel the changes in mitochondrial and redox homeostasis within skeletal muscle during CKD. Impairments in mitochondrial metabolism, characterized by reduced oxidative phosphorylation, are found in both rodents and patients with CKD. Associated with aberrant mitochondrial function, clinical and preclinical findings have documented signs of oxidative stress, although the molecular source and species are ill-defined. Critical Issues: First, we review the pathobiology of CKD and its associated myopathy, and we review muscle cell bioenergetics and redox biology. Second, we discuss evidence from clinical and preclinical studies that have implicated the involvement of mitochondrial and redox alterations in CKD-associated myopathy and review the underlying mechanisms reported. Third, we discuss gaps in knowledge related to mitochondrial and redox alterations on muscle health and function in CKD. Future Directions: Despite what has been learned, effective treatments to improve muscle health in CKD remain elusive. Further studies are needed to uncover the complex mitochondrial and redox alterations, including post-transcriptional protein alterations, in patients with CKD and how these changes interact with known or unknown catabolic pathways contributing to poor muscle health and function. Antioxid. Redox Signal. 38, 318-337.


Asunto(s)
Enfermedades Musculares , Insuficiencia Renal Crónica , Humanos , Calidad de Vida , Mitocondrias/metabolismo , Enfermedades Musculares/etiología , Enfermedades Musculares/metabolismo , Músculo Esquelético/metabolismo , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...