Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38674119

RESUMEN

The aim of this work is research dedicated to the search for new bactericidal systems for use in cosmetic formulations, dermocosmetics, or the production of wound dressings. Over the last two decades, chitosan, due to its special biological activity, has become a highly indispensable biopolymer with very wide application possibilities. Reports in the literature on the antibacterial effects of chitosan are very diverse, but our research has shown that they can be successfully improved through chemical modification. Therefore, in this study, results on the synthesis of new chitosan-based Schiff bases, dCsSB-SFD and dCsSB-PCA, are obtained using two aldehydes: sodium 4-formylbenzene-1,3-disulfonate (SFD) and 2-pyridine carboxaldehyde (PCA), respectively. Chitosan derivatives synthesized in this way demonstrate stronger antimicrobial activity. Carrying out the procedure of grafting chitosan with a caproyl chain allowed obtaining compatible blends of chitosan derivatives with κ-carrageenan, which are stable hydrogels with a high swelling coefficient. Furthermore, the covalently bounded poly(ε-caprolactone) (PCL) chain improved the solubility of obtained polymers in organic solvents. In this respect, the Schiff base-containing polymers obtained in this study, with special hydrogel and antimicrobial properties, are very promising materials for potential use as a controlled-release formulation of both hydrophilic and hydrophobic drugs in cosmetic products for skin health.


Asunto(s)
Antibacterianos , Carragenina , Quitosano , Bases de Schiff , Quitosano/química , Quitosano/análogos & derivados , Quitosano/farmacología , Carragenina/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Bases de Schiff/química , Hidrogeles/química , Pruebas de Sensibilidad Microbiana , Solubilidad
2.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38675497

RESUMEN

The United Nations World Drug Report published in 2022 alarmed that the global market of illicit drugs is steadily expanding in space and scale. Substances of abuse are usually perceived in the light of threats to human health and public security, while the environmental aspects of their use and subsequent emissions usually remain less explored. However, as with other human activities, drug production, trade, and consumption of drugs may leave their environmental mark. Therefore, this paper aims to review the occurrence of illicit drugs in surface waters and their bioaccumulation and toxicity in fish. Illicit drugs of different groups, i.e., psychostimulants (methamphetamines/amphetamines, cocaine, and its metabolite benzoylecgonine) and depressants (opioids: morphine, heroin, methadone, fentanyl), can reach the aquatic environment through wastewater discharge as they are often not entirely removed during wastewater treatment processes, resulting in their subsequent circulation in nanomolar concentrations, potentially affecting aquatic biota, including fish. Exposure to such xenobiotics can induce oxidative stress and dysfunction to mitochondrial and lysosomal function, distort locomotion activity by regulating the dopaminergic and glutamatergic systems, increase the predation risk, instigate neurological disorders, disbalance neurotransmission, and produce histopathological alterations in the brain and liver tissues, similar to those described in mammals. Hence, this drugs-related multidimensional harm to fish should be thoroughly investigated in line with environmental protection policies before it is too late. At the same time, selected fish species (e.g., Danio rerio, zebrafish) can be employed as models to study toxic and binge-like effects of psychoactive, illicit compounds.

3.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473823

RESUMEN

The work presents the synthesis of a series of linear polyamidoamines by polycondensation of sebacoyl dichloride with endogenous polyamines: putrescine, spermidine, spermine, and norspermidine-a biogenic polyamine not found in the human body. During the synthesis carried out via interfacial reaction, hydrophilic, semi-crystalline polymers with an average viscosity molecular weight of approximately 20,000 g/mol and a melting point of approx. 130 °C were obtained. The structure and composition of the synthesized polymers were confirmed based on NMR and FTIR studies. The cytotoxicity tests performed on human fibroblasts and keratinocytes showed that the polymers obtained with spermine and norspermidine were strongly cytotoxic, but only in high concentrations. All the other examined polymers did not show cytotoxicity even at concentrations of 2000 µg/mL. Simultaneously, the antibacterial activity of the obtained polyamides was confirmed. These polymers are particularly active against E. Coli, and virtually all the polymers obtained demonstrated a strong inhibitory effect on the growth of cells of this strain. Antimicrobial activity of the tested polymer was found against strains like Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa. The broadest spectrum of bactericidal action was demonstrated by polyamidoamines obtained from spermine, which contains two amino groups in the repeating unit of the chain. The obtained polymers can be used as a material for forming drug carriers and other biologically active compounds in the form of micro- and nanoparticles, especially as a component of bactericidal creams and ointments used in dermatology or cosmetology.


Asunto(s)
Escherichia coli , Espermidina/análogos & derivados , Espermina , Humanos , Espermina/farmacología , Poliaminas/farmacología , Antibacterianos/farmacología , Polímeros/farmacología
4.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38203826

RESUMEN

Blends of poly(lactic acid) (PLA) with poly(propylene carbonate) (PPC) are currently in the phase of intensive study due to their promising properties and environmentally friendly features. Intensive study and further commercialization of PPC-based polymers or their blends, as usual, will soon face the problem of their waste occurring in the environment, including soil. For this reason, it is worth comprehensively studying the degradation rate of these polymers over a long period of time in soil and, for comparison, in phosphate buffer to understand the difference in this process and evaluate the potential application of such materials toward agrochemical and agricultural purposes. The degradation rate of the samples was generally accompanied by weight loss and a decrease in molecular weight, which was facilitated by the presence of PPC. The incubation of the samples in the aqueous media yielded greater surface erosions compared to the degradation in soil, which was attributed to the leaching of the low molecular degradation species out of the foils. The phytotoxicity study confirmed the no toxic impact of the PPC on tested plants, indicating it as a "green" material, which is crucial information for further, more comprehensive study of this polymer toward any type of sustainable application.


Asunto(s)
Agricultura , Polipropilenos , Suelo , Poliésteres , Polímeros , Fosfatos
5.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108637

RESUMEN

Antibiotic resistance is one of the greatest threats to global health and food security today. It becomes increasingly difficult to treat infectious disorders because antibiotics, even the newest ones, are becoming less and less effective. One of the ways taken in the Global Plan of Action announced at the World Health Assembly in May 2015 is to ensure the prevention and treatment of infectious diseases. In order to do so, attempts are made to develop new antimicrobial therapeutics, including biomaterials with antibacterial activity, such as polycationic polymers, polypeptides, and polymeric systems, to provide non-antibiotic therapeutic agents, such as selected biologically active nanoparticles and chemical compounds. Another key issue is preventing food from contamination by developing antibacterial packaging materials, particularly based on degradable polymers and biocomposites. This review, in a cross-sectional way, describes the most significant research activities conducted in recent years in the field of the development of polymeric materials and polymer composites with antibacterial properties. We particularly focus on natural polymers, i.e., polysaccharides and polypeptides, which present a mechanism for combating many highly pathogenic microorganisms. We also attempt to use this knowledge to obtain synthetic polymers with similar antibacterial activity.


Asunto(s)
Antiinfecciosos , Nanopartículas , Polímeros/química , Estudios Transversales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/química
6.
Animals (Basel) ; 13(6)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36978570

RESUMEN

Our research sought to determine the molecular and biochemical effects of environmentally relevant exposure to commonly used chloro-s-triazine herbicide terbuthylazine and organophosphate insecticide malathion on zebrafish. To this aim, mature zebrafish were exposed to 2 and 30 µg L-1 terbuthylazine and 5 and 50 µg L-1 malathion alone and in combination for 14 days. Aside from the accumulation of TBARS and protein carbonyls, a decrease in antioxidants and succinate dehydrogenase activity, an increase in oxidized glutathione, and enhanced apoptosis via Caspase-3 and BAX overexpression were observed. Furthermore, terbuthylazine and malathion induced mitochondrial swelling (up to 210% after single exposure and up to 470% after co-exposure) and lactate dehydrogenase leakage (up to 268% after single exposure and up to 570% after co-exposure) in a concentration-dependent manner. Significant upregulation of ubiquitin expression and increased cathepsin D activity were characteristics that appeared only upon terbuthylazine exposure, whereas the induction of IgM was identified as the specific characteristic of malathion toxicity. Meanwhile, no alterations in the zebrafish hypothalamic-pituitary-thyroid axis was observed. Co-exposure increased the adverse effects of individual pesticides on zebrafish. This study should improve the understanding of the mechanisms of pesticide toxicity that lead to fish impairment and biodiversity decline.

7.
Chemosphere ; 308(Pt 3): 136207, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36116620

RESUMEN

The aim of the study is an ecotoxicological assessment of magnetite iron oxide-based nanoparticles (NPs), which have risen in popularity in the last decade, on selected terrestrial and aquatic organisms from various levels of the food chain. In the presented study various organisms, from both the terrestrial and aquatic environment, were used as targets for the assessment of NPs ecotoxicity. Plants (radish, oat), marine bacteria (A. fischeri) and crustacean (H. incongruens) were used to represent producers, decomposers, and consumers, respectively. It was found that examined NPs were harmful (to a different degree) to biota from three different trophic levels. Physicochemical characterization (size/morphology, crystallinity, composition, and magnetic properties) of the tested nanoparticles was performed by: transmission electron microscopy, X-ray diffraction, energy dispersive spectroscopy, and Mossbauer spectroscopy, respectively. Phytotoxicity was evaluated according to the OECD 208 Guideline, while acute and chronic toxicity of NPs was conducted using bioassays employing bacteria and crustacea, respectively. The phytotoxicity of all investigated iron oxide-based NPs was dependent on concentration and type of NPs formulation and was measured via biomass, seed germination, root length, shoot height, and content of plant pigments. Increasing the concentration of NPs increased phytotoxicity and mortality of aquatic organisms. Ecotoxicity of iron oxide/silver was dependent on the size and content of silver. Iron oxide NPs coated with nanosilver in a percentage ratio of 69/31 were found to be the most toxic on tested terrestrial and aquatic biota.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas del Metal , Nanopartículas , Animales , Organismos Acuáticos , Biota , Crustáceos , Compuestos Férricos , Óxido Ferrosoférrico/toxicidad , Nanopartículas de Magnetita/toxicidad , Nanopartículas del Metal/química , Plata
8.
J Xenobiot ; 12(3): 236-265, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36135714

RESUMEN

Pesticides are well known for their high levels of persistence and ubiquity in the environment, and because of their capacity to bioaccumulate and disrupt the food chain, they pose a risk to animals and humans. With a focus on organophosphate and triazine pesticides, the present review aims to describe the current state of knowledge regarding spatial distribution, bioaccumulation, and mode of action of frequently used pesticides. We discuss the processes by which pesticides and their active residues are accumulated and bioconcentrated in fish, as well as the toxic mechanisms involved, including biological redox activity, immunotoxicity, neuroendocrine disorders, and cytotoxicity, which is manifested in oxidative stress, lysosomal and mitochondrial damage, inflammation, and apoptosis/autophagy. We also explore potential research strategies to close the gaps in our understanding of the toxicity and environmental risk assessment of organophosphate and triazine pesticides.

9.
Materials (Basel) ; 15(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35806664

RESUMEN

Packaging for fresh fruits and vegetables with additional properties such as inhibition of pathogens grown can reduce food waste. With its biodegradability, poly(ε-caprolactone) (PCL) is a good candidate for packaging material, especially in the form of an electrospun membrane. The preparation of nonwoven fabric of PCL loaded with food additive, antimicrobial nisin makes them an active packaging with antispoilage properties. During the investigation of the nonwoven fabric mats, different concentrations of nisin were obtained from the solution of PCL via the electrospinning technique. The obtained active porous PCL loaded with varying concentrations of nisin inhibited the growth of Staphylococcus aureus and Escherichia coli. Packages made of PCL and PCL/nisin fibrous mats demonstrated a prolongation of the fruits' freshness, improving their shelf life and, consequently, their safety.

10.
J Environ Health Sci Eng ; 20(1): 337-346, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35669837

RESUMEN

Purpose: The aim of the present study was to evaluate the toxicity and biodegradation potential of oil hydrocarbons contaminated soil samples obtained from different depths at an oil refinery station area. An approach involving chemical, microbiological, respirometry and ecotoxicity assessment of soil polluted by oil hydrocarbons was adopted, in order to determine the biodegradability of pollutants and ecotoxicological effects of natural attenuation strategy. Methods: The ecotoxicity of soil samples was evaluated using an ostracod test kit and a seed germination test. The results of the phytotoxicity assay were expressed as a percentage of seedling emergence and as the relative yield of fresh and dry biomass compared to control plants. The intrinsic biodegradation potential of the contaminated soil was examined using a Micro-Oxymax respirometer. Intrinsic biodegradation rates were estimated from the slopes of linear regressions curves plotted for cumulative O2 uptake. The obtained values were then entered in the mass balance equation for the stoichiometric reaction of hydrocarbon decomposition and converted per kg of soil per day. Results: Although the tested contaminants were biodegradable in the respirometric assay, they were slightly to moderately toxic to plants and extremely toxic to ostracods. The noxious effects raised with the increased concentration of contaminants. The monocotyledonous oat was more tolerant to higher concentrations of oil hydrocarbons than the other test plants, indicating its greater suitability for soil reclamation purposes. Conclusion: By assessing phytotoxicity and effect on ostracod mortality and progress of soil self-decontamination process, proper approach of reclamation of demoted area can be provided.

11.
Polymers (Basel) ; 14(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35160492

RESUMEN

This work presents the results of research on the preparation of bioresorbable functional polyestercarbonates containing side carboxyl groups. These copolymers were synthesized in two ways: the classic two-step process involving the copolymerization of l-lactide and a cyclic carbonate containing a blocked side carboxylate group in the form of a benzyl ester (MTC-Bz) and its subsequent deprotection, and a new way involving the one-step copolymerization of l-lactide with this same carbonate, but containing an unprotected carboxyl group (MTC-COOH). Both reactions were carried out under identical conditions in the melt, using a specially selected zinc chelate complex, with Zn[(acac)(L)H2O] (where: L-N-(pyridin-4-ylmethylene) phenylalaninate ligand) as an initiator. The differences in the kinetics of both reactions and their courses were pictured. The reactivity of the MTC-COOH monomer without a blocking group in the studied co-polymerization was much higher, even slightly higher than l-lactide, which allowed the practically complete conversion of the comonomers in a much shorter time. The basic final properties of the obtained copolymers and the microstructures of their chains were determined. The single-step synthesis of biodegradable polyacids was much simpler. Contrary to the conventional method, this made it possible to obtain copolymers containing all carbonate units with carboxyl groups, without even traces of the heavy metals used in the deprotection of the carboxyl groups, the presence of which is known to be very difficult to completely remove from the copolymers obtained in the two-step process.

12.
Materials (Basel) ; 14(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34443216

RESUMEN

In modern society, it is impossible to imagine life without polymeric materials. However, managing the waste composed of these materials is one of the most significant environmental issues confronting us in the present day. Recycling polymeric waste is the most important action currently available to reduce environmental impacts worldwide and is one of the most dynamic areas in industry today. Utilizing this waste could not only benefit the environment but also promote sustainable development and circular economy management. In its program statement, the European Union has committed to support the use of sorted polymeric waste. This study reviews recent attempts to recycle this waste and convert it by alternative technologies into fine, nano-, and microscale fibers using electrospinning, blowing, melt, or centrifugal spinning. This review provides information regarding applying reprocessed fine fibers in various areas and a concrete approach to mitigate the threat of pollution caused by polymeric materials.

13.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203313

RESUMEN

The paper presents a synthesis of poly(l-lactide) with bacteriostatic properties. This polymer was obtained by ring-opening polymerization of the lactide initiated by selected low-toxic zinc complexes, Zn[(acac)(L)H2O], where L represents N-(pyridin-4-ylmethylene) tryptophan or N-(2-pyridin-4-ylethylidene) phenylalanine. These complexes were obtained by reaction of Zn[(acac)2 H2O] and Schiff bases, the products of the condensation of amino acids and 4-pyridinecarboxaldehyde. The composition, structure, and geometry of the synthesized complexes were determined by NMR and FTIR spectroscopy, elemental analysis, and molecular modeling. Both complexes showed the geometry of a distorted trigonal bipyramid. The antibacterial and antifungal activities of both complexes were found to be much stronger than those of the primary Schiff bases. The present study showed a higher efficiency of polymerization when initiated by the obtained zinc complexes than when initiated by the zinc(II) acetylacetonate complex. The synthesized polylactide showed antibacterial properties, especially the product obtained by polymerization initiated by a zinc(II) complex with a ligand based on l-phenylalanine. The polylactide showed a particularly strong antimicrobial effect against Pseudomonas aeruginosa, Staphylococcus aureus, and Aspergillus brasiliensis. At the same time, this polymer does not exhibit fibroblast cytotoxicity.


Asunto(s)
Poliésteres/química , Polímeros/química , Zinc/química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Aspergillus/efectos de los fármacos , Quelantes/química , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
14.
Materials (Basel) ; 13(12)2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32575529

RESUMEN

The present study aimed to develop and prepare new polymer/herbicide formulations for their potential application in environment-friendly, controlled release systems of agrochemicals. Selected biodegradable polymers, including L-Lactide/Glycolide/PEG/Terpolymer (PLAGA-PEG-PLAGA) as well as oligosaccharide-based polymers and their blend with terpolymer, were used to prepare microspheres loaded with two soil-applied herbicides. The degradation process of the obtained polymeric microspheres was evaluated based on (1) their weight loss and surface erosion and (2) the release rate of loaded metazachlor and pendimethalin. The herbicidal effectiveness of the herbicides released to the soil from microspheres was evaluated using the European Weed Research Council (EWRC) rating scale. Moreover, the ecotoxicological effect of herbicide-loaded microspheres buried in soil on the marine bacterial species A. fischeri was assessed. It was found that the gradual degradation rate of microparticles led to the prolonged release of both herbicides that lasted for a few months, i.e., for the entire crop season, which is crucial in terms of agrochemical and environmental protection. Maltodextrin- and dextrin-based microspheres showed higher susceptibility to degradation than terpolymer-based microspheres. The microencapsulation of herbicides protected them from decomposition and excessive leaching into soil and maintained their activity for a longer period than that for non-immobilized herbicides. The ecotoxicological assessment on A. fischeri demonstrated that the proposed microsphere-encapsulated herbicides were less toxic than non-immobilized herbicides.

15.
Ecotoxicol Environ Saf ; 194: 110331, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32146199

RESUMEN

In this paper, comparison of ecotoxicological and herbicidal effect of newly synthesized N­[(phosphono)(aryl)methyl]glycines 1a-g (C-substituted glyphosate derivatives) with pure glyphosate (N-phosphonomethylglycine) (2) was demonstrated. All of tested glyphosate derivatives (1a-g) in contrast to glyphosate, were found to be completely safe for oat (Avena sativa) and classified as not harmful for marine bacteria Aliivibrio fischeri. Compounds 1a-g were also found rather harmless to radish (Raphanus sativus) as compared to N-phosphonomethylglycine, but they were moderately toxic against freshwater crustaceans Heterocypris incongruens. One of synthesized compounds, namely N-[(phosphono)(4-hydroxyphenyl)methyl]glycine (1f) was found to possess stronger herbicidal properties against gallant soldier (Galinsoga parviflora) and common sorrel (Rumex acetosa) when compared to pure glyphosate and demonstrated total death of these weeds being ranked 1 in the European Weed Research Council (EWRC) scale. Considering lower phytotoxicity of compound 1f against cultivated plants and tested microorganisms when compared to pure glyphosate, this aminophosphonate may be good candidate for further, more comprehensive study toward its agrochemical application, especially that this active agent demonstrated much stronger herbicidal properties than N-phosphonomethylglycine.


Asunto(s)
Ecotoxicología , Glicina/análogos & derivados , Herbicidas/toxicidad , Agricultura , Aliivibrio fischeri/efectos de los fármacos , Animales , Avena/efectos de los fármacos , Crustáceos/efectos de los fármacos , Glicina/toxicidad , Herbicidas/química , Malezas/efectos de los fármacos , Raphanus/efectos de los fármacos , Pruebas de Toxicidad , Glifosato
16.
Materials (Basel) ; 13(4)2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32059530

RESUMEN

The presented work aimed to test influence of poly(L-lactide-co-glycolide)-block-poly (ethylene oxide) copolymer modification by blending with grafted dextrin or maltodextrin on the course of degradation in soil and the usefulness of such material as a matrix in the controlled release of herbicides. The modification should be to obtain homogenous blends with better susceptibility to enzymatic degradation. Among all tested blends, which were proposed as a carrier for potential use in the controlled release of plant protection agents, PLGA-block-PEG copolymer blended with grafted dextrin yielded very promising results for their future applications, and what is very importantly proposed formulations provide herbicides in unchanged form into soil within few months of release. The modification PLAGA/PEG copolymer by blending with modificated dextrins affects the improvement of the release profile. The weekly release rates for both selected herbicides (metazachlor and pendimethalin) were constant for a period of 12 weeks. Enzymatic degradation of modified dextrin combined with leaching of the degradation products into medium caused significant erosion of the polymer matrix, thereby leading to acceleration of water diffusion into the polymer matrix and allowing for easier leaching of herbicides outside the matrix.

17.
J Environ Sci Health B ; 54(8): 681-692, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31403392

RESUMEN

Although there are many reports on the dangers posed by glyphosate, this herbicide is still one of the most popular and widely used total weed killers. Therefore, great effort should be made to minimize exposure to this herbicide and limit its losses into the environment. The aim of this study was to prepare a new formulation consisted of various molecular weight chitosans with glyphosate and their evaluation toward active substance release, phytotoxicity, and preliminary herbicidal efficiency. The phytotoxicity study of the obtained chitosan/glyphosate formulations was determined based on the Organisation for Economic Co-operation and Development 208 guideline. Among all tested formulations evaluated for phytotoxicity, that containing the highest molecular weight of chitosan was found to be the least toxic, showing simultaneously the most effective herbicidal activity against selected weeds. The release rate of glyphosate from the obtained formulations was dependent on the molecular weight and viscosity of chitosan.


Asunto(s)
Quitosano/química , Glicina/análogos & derivados , Herbicidas/química , Herbicidas/farmacología , Quitosano/farmacología , Glicina/química , Glicina/farmacocinética , Glicina/farmacología , Herbicidas/farmacocinética , Peso Molecular , Malezas/efectos de los fármacos , Glifosato
18.
Materials (Basel) ; 12(12)2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31238500

RESUMEN

The aim of this work was to evaluate the impact of the thiophene-derived aminophosphonates 1-6 on seedling emergence and growth of monocotyledonous oat (Avena sativa) and dicotyledonous radish (Raphanus sativus L.), and phytotoxicity against three persistent and resistant weeds (Galinsoga parviflora Cav., Rumex acetosa L., and Chenopodium album). Aminophosphonates 1-6 have never been described in the literature. The phytotoxicity of tested aminophosphonates toward their potential application as soil-applied herbicides was evaluated according to the OECD (Organization for Economic and Cooperation Development Publishing) 208 Guideline. In addition, their ecotoxicological impact on crustaceans Heterocypris incongruens and bacteria Aliivibrio fischeri was measured using the OSTRACODTOXKITTM and Microtox® tests. Obtained results showed that none of the tested compounds were found sufficiently phytotoxic and none of them have any herbicidal potential. None of the tested compounds showed important toxicity against Aliivibrio fischeri but they should be considered as slightly harmful. Harmful impacts of compounds 1-6 on Heterocypris incongruens were found to be significant.

19.
Chemosphere ; 226: 800-808, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30965251

RESUMEN

Poly(2-oxazoline) polymers have found extensive application in the preparation of microcapsules for biomedical purposes. However, there is a scarcity of information related to their ecotoxicological assessment. Therefore, in this study, we focused on the ecotoxicity of selected polyethylenimines (PEIs) including poly(2-ethyl-2-oxazoline) (PEtOx) as an N-acyl-substituted PEI, linear polyethylenimine (LPEI) and branched polyethylenimine (BPEI). Oat (a monocotyledon) (Avena sativa) and radish (a dicotyledon) (Raphanus sativus) were selected as the representative plants, which are recommended by the Organization for Economic Cooperation and Development (OECD) 208 as the standard to test for plant growth. Shoot and root length, fresh and dry matter, level of total nitrogen in green parts of the plants, as well as total chlorophyll and carotenoids were determined. Phytotoxicity of all the tested parameters was dependent on the concentration of the examined polymers in the soil as well as on the time of their incubation in the soil. According to our results, the amount of nitrogen in green parts of the plants was increased compared to the control plants, which revealed the uptake of the plant-available form of nitrogen released from the tested PEIs. This was especially true for the plants treated with LPEI. Ecotoxicological impact of the incubated polymers in the soil against marine bacteria Allivibrio fischeri proved that, the all tested polyethylenimines may be classified as not harmful to aquatic microorganisms.


Asunto(s)
Ecotoxicología , Fertilizantes , Nitrógeno/metabolismo , Polietileneimina/química , Organismos Acuáticos/efectos de los fármacos , Avena/efectos de los fármacos , Avena/crecimiento & desarrollo , Bacterias , Desarrollo de la Planta/efectos de los fármacos , Polietileneimina/farmacología , Raphanus/efectos de los fármacos , Raphanus/crecimiento & desarrollo
20.
Chemosphere ; 222: 381-390, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30711727

RESUMEN

This paper discusses the impact of two nitrofuran-derived drugs, namely furazolidone and nitrofurantoin on growth of oat and common radish as well as their impact on bacteria Allivibrio fischeri and crustaceans Heterocypris incongruens. Results indicated that both compounds were highly phytotoxic for radish (R. sativus) being simultaneously nearly not harmful for oat (A. sativa). Growing inhibition of shoots, roots, fresh matter and photosynthetic pigments is correlated with growing concentration of drugs in soil. Ecotoxicological impact of both compounds on model luminescence bacteria Aliivibrio fischeri and freshwater crustaceans Heterocypris incongruens as a representative organisms of two different level of food chain, is also reported herein, and the obtained data show significant toxicity against these two organisms. Basing on obtained results, it was concluded that both nitrofuran drugs in case of distribution through environment, by improper utilisation after use or unplanned environmental intoxication with unused drugs may cause serious environmental problems and therefore both should be handled with a reasonable care at any step of their production or utilisation.


Asunto(s)
Ecotoxicología , Furazolidona/toxicidad , Nitrofuranos/toxicidad , Nitrofurantoína/toxicidad , Aliivibrio fischeri/efectos de los fármacos , Animales , Antibacterianos/toxicidad , Avena/efectos de los fármacos , Avena/crecimiento & desarrollo , Crustáceos/efectos de los fármacos , Nitrofuranos/química , Raphanus/efectos de los fármacos , Raphanus/crecimiento & desarrollo , Contaminantes del Suelo/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...