Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(6): 114323, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38861385

RESUMEN

Aberrant male germline development can lead to the formation of seminoma, a testicular germ cell tumor. Seminomas are biologically similar to primordial germ cells (PGCs) and many bear an isochromosome 12p [i(12p)] with two additional copies of the short arm of chromosome 12. By mapping seminoma transcriptomes and open chromatin landscape onto a normal human male germline trajectory, we find that seminoma resembles premigratory/migratory PGCs; however, it exhibits enhanced germline and pluripotency programs and upregulation of genes involved in apoptosis, angiogenesis, and MAPK/ERK pathways. Using pluripotent stem cell-derived PGCs from Pallister-Killian syndrome patients mosaic for i(12p), we model seminoma and identify gene dosage effects that may contribute to transformation. As murine seminoma models do not exist, our analyses provide critical insights into genetic, cellular, and signaling programs driving seminoma transformation, and the in vitro platform developed herein permits evaluation of additional signals required for seminoma tumorigenesis.


Asunto(s)
Epigénesis Genética , Células Germinativas , Seminoma , Neoplasias Testiculares , Humanos , Seminoma/genética , Seminoma/patología , Seminoma/metabolismo , Masculino , Células Germinativas/metabolismo , Neoplasias Testiculares/genética , Neoplasias Testiculares/patología , Neoplasias Testiculares/metabolismo , Transcripción Genética , Regulación Neoplásica de la Expresión Génica , Transcriptoma/genética
2.
Clin Cancer Res ; 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767611

RESUMEN

PURPOSE: Uveal melanoma (UM) is the most common intraocular malignant tumor. Despite successful treatment of the primary tumor, about 50% of patients will recur with systemic disease for which there are no effective treatment strategies. Here we investigated the preclinical efficacy of a chimeric antigen receptor (CAR) T cell-based immunotherapy targeting B7-H3. EXPERIMENTAL DESIGN: B7-H3 expression on primary and metastatic human UM samples and cell lines was assessed by RNA sequencing, flow cytometry, and immunohistochemistry. Antitumor activity of CAR T cells targeting B7-H3 was tested in vitro with UM cell lines, metastatic UM patient-derived organotypic tumor spheroids (PDOTS), and in immunodeficient and humanized murine models. RESULTS: B7-H3 is expressed at high levels on >95% UM tumor cells in vitro and in vivo. We generated a B7-H3 CAR with an inducible caspase-9 (iCas9) suicide gene controlled by the chemical inducer of dimerization AP1903, which effectively kills UM cells in vitro and eradicates UM liver metastases in murine models. Delivery of iCas9.B7-H3 CAR T cells in experimental models of UM liver metastases demonstrates a durable anti-tumor response, even upon tumor re-challenge or in the presence of a significant metastatic disease burden. We demonstrate effective iCas9.B7-H3 CAR T cell elimination in vitro and in vivo in response to AP1903. Our studies demonstrate more effective tumor suppression with iCas9.B7-H3 CAR T cells as compared to a B7-H3-targeted humanized monoclonal antibody. CONCLUSIONS: These studies support a phase I clinical trial with iCas9.B7-H3 CAR T cells to treat patients with metastatic UM.

4.
Gut ; 73(8): 1280-1291, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38621923

RESUMEN

OBJECTIVE: Genomic studies of gastric cancer have identified highly recurrent genomic alterations impacting RHO signalling, especially in the diffuse gastric cancer (DGC) histological subtype. Among these alterations are interchromosomal translations leading to the fusion of the adhesion protein CLDN18 and RHO regulator ARHGAP26. It remains unclear how these fusion constructs impact the activity of the RHO pathway and what is their broader impact on gastric cancer development. Herein, we developed a model to allow us to study the function of this fusion protein in the pathogenesis of DGC and to identify potential therapeutic targets for DGC tumours with these alterations. DESIGN: We built a transgenic mouse model with LSL-CLDN18-ARHGAP26 fusion engineered into the Col1A1 locus where its expression can be induced by Cre recombinase. Using organoids generated from this model, we evaluated its oncogenic activity and the biochemical effects of the fusion protein on the RHOA pathway and its downstream cell biological effects in the pathogenesis of DGC. RESULTS: We demonstrated that induction of CLDN18-ARHGAP26 expression in gastric organoids induced the formation of signet ring cells, characteristic features of DGC and was able to cooperatively transform gastric cells when combined with the loss of the tumour suppressor geneTrp53. CLDN18-ARHGAP26 promotes the activation of RHOA and downstream effector signalling. Molecularly, the fusion promotes activation of the focal adhesion kinase (FAK) and induction of the YAP pathway. A combination of FAK and YAP/TEAD inhibition can significantly block tumour growth. CONCLUSION: These results indicate that the CLDN18-ARHGAP26 fusion is a gain-of-function DGC oncogene that leads to activation of RHOA and activation of FAK and YAP signalling. These results argue for further evaluation of emerging FAK and YAP-TEAD inhibitors for these deadly cancers.


Asunto(s)
Claudinas , Proteínas Activadoras de GTPasa , Ratones Transgénicos , Transducción de Señal , Neoplasias Gástricas , Factores de Transcripción , Proteínas Señalizadoras YAP , Proteína de Unión al GTP rhoA , Animales , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Ratones , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoA/genética , Claudinas/genética , Claudinas/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Factores de Transcripción de Dominio TEA , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Organoides/metabolismo , Organoides/patología
5.
Artículo en Inglés | MEDLINE | ID: mdl-38669694

RESUMEN

There is a high unmet need for early detection approaches for diffuse gastric cancer (DGC). We examined whether the stool proteome of mouse models of GC or individuals with hereditary diffuse GC (HDGC) have utility as biomarkers for early detection. Proteomic mass spectrometry of stool from a genetically engineered mouse model driven by oncogenic KrasG12D and loss of p53 and Cdh1 in gastric parietal cells (known as TCON mice) identified differentially abundant proteins compared to littermate controls. Immunoblot assays validated a panel of proteins including actinin alpha 4 (ACTN4), N-acylsphingosine amidohydrolase 2 (ASAH2), dipeptidyl peptidase 4 (DPP4), and valosin-containing protein (VCP) as enriched in TCON stool compared to littermate control stool. Immunofluorescence analysis of these proteins in TCON stomach sections revealed increased protein expression as compared to littermate controls. Proteomic mass spectrometry of stool obtained from HDGC patients with CDH1 mutations identified increased expression of ASAH2, DPP4, VCP, lactotransferrin (LTF), and tropomyosin-2 (TPM2) relative to stool from healthy sex and age-matched donors. Chemical inhibition of ASAH2 using C6-urea ceramide was toxic to GC cell lines and patient derived-GC organoids. This toxicity was reversed by adding downstream products of the S1P synthesis pathway, suggesting a dependency on ASAH2 activity in GC. An exploratory analysis of the HDGC stool microbiome identified features which correlated with patient tumors. Here we provide evidence supporting the potential of analyzing stool biomarkers for the early detection of DGC.

7.
bioRxiv ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38496544

RESUMEN

Cancer cells have been shown to exploit neurons to modulate their survival and growth, including through establishment of neural circuits within the central nervous system (CNS) 1-3 . Here, we report a distinct pattern of cancer-nerve interactions between the peripheral nervous system (PNS) and gastric cancer (GC). In multiple GC mouse models, nociceptive nerves demonstrated the greatest degree of nerve expansion in an NGF-dependent manner. Neural tracing identified CGRP+ peptidergic neurons as the primary gastric sensory neurons. Three-dimensional co-culture models showed that sensory neurons directly connect with gastric cancer spheroids through synapse-like structures. Chemogenetic activation of sensory neurons induced the release of calcium into the cytoplasm of cancer cells, promoting tumor growth and metastasis. Pharmacological ablation of sensory neurons or treatment with CGRP inhibitors suppressed tumor growth and extended survival. Depolarization of gastric tumor membranes through in vivo optogenetic activation led to enhanced calcium flux in nodose ganglia and CGRP release, defining a cancer cell-peptidergic neuronal circuit. Together, these findings establish the functional connectivity between cancer and sensory neurons, identifying this pathway as a potential therapeutic target.

12.
J Vis Exp ; (203)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38345211

RESUMEN

Gastric patient-derived organoids (PDOs) offer a unique tool for studying gastric biology and pathology. Consequently, these PDOs find increasing use in a wide array of research applications. However, a shortage of published approaches exists for producing gastric PDOs from single-cell digests while maintaining a standardized initial cell seeding density. In this protocol, the emphasis is on the initiation of gastric organoids from isolated single cells and the provision of a method for passaging organoids through fragmentation. Importantly, the protocol demonstrates that a standardized approach to the initial cell seeding density consistently yields gastric organoids from benign biopsy tissue and allows for standardized quantification of organoid growth. Finally, evidence supports the novel observation that gastric PDOs display varying rates of formation and growth based on whether the organoids originate from biopsies of the body or antral regions of the stomach. Specifically, it is revealed that the use of antral biopsy tissue for organoid initiation results in a greater number of organoids formed and more rapid organoid growth over a 20-day period when compared to organoids generated from biopsies of the gastric body. The protocol described herein offers investigators a timely and reproducible method for successfully generating and working with gastric PDOs.


Asunto(s)
Organoides , Estómago , Humanos , Epitelio , Biopsia , Proliferación Celular
13.
Cancers (Basel) ; 15(16)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37627142

RESUMEN

Gastric cancer is a highly prevalent and lethal disease worldwide. Given the insidious nature of the presenting symptoms, patients are frequently diagnosed with advanced, unresectable disease. However, many patients will present with locally advanced gastric cancer (LAGC), which is often defined as the primary tumor extending beyond the muscularis propria (cT3-T4) or having nodal metastases (cN+) disease and without distant metastases (cM0). LAGC is typically treated with surgical resection and perioperative chemotherapy. The treatment of LAGC remains a challenge, given the heterogeneity of this disease, and the optimal multimodal treatment regimen may be different for different LAGC subtypes. However, many promising treatments are on the horizon based on knowledge of molecular subtypes and key biomarkers of LAGC, such as microsatellite instability, HER2, Claudin 18.2, FGFR2, and PD-L1. This review will expand upon the discussion of current standard neoadjuvant and adjuvant therapies for LAGC and explore the ongoing and future clinical trials for novel therapies, with information obtained from searches in PubMed and ClinicalTrials.gov.

14.
BMC Cancer ; 23(1): 690, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37481516

RESUMEN

Our previous work showed that KRAS activation in gastric cancer cells leads to activation of an epithelial-to-mesenchymal transition (EMT) program and generation of cancer stem-like cells (CSCs). Here we analyze how this KRAS activation in gastric CSCs promotes tumor angiogenesis and metastasis. Gastric cancer CSCs were found to secrete pro-angiogenic factors such as vascular endothelial growth factor A (VEGF-A), and inhibition of KRAS markedly reduced secretion of these factors. In a genetically engineered mouse model, gastric tumorigenesis was markedly attenuated when both KRAS and VEGF-A signaling were blocked. In orthotropic implant and experimental metastasis models, silencing of KRAS and VEGF-A using shRNA in gastric CSCs abrogated primary tumor formation, lymph node metastasis, and lung metastasis far greater than individual silencing of KRAS or VEGF-A. Analysis of gastric cancer patient samples using RNA sequencing revealed a clear association between high expression of the gastric CSC marker CD44 and expression of both KRAS and VEGF-A, and high CD44 and VEGF-A expression predicted worse overall survival. In conclusion, KRAS activation in gastric CSCs enhances secretion of pro-angiogenic factors and promotes tumor progression and metastasis.


Asunto(s)
Neoplasias Gástricas , Animales , Ratones , Factor A de Crecimiento Endotelial Vascular , Proteínas Proto-Oncogénicas p21(ras) , Metástasis Linfática
15.
Haematologica ; 108(10): 2570-2581, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37439336

RESUMEN

Children with Down syndrome (DS, trisomy 21) are at a significantly higher risk of developing acute leukemia compared to the overall population. Many studies investigating the link between trisomy 21 and leukemia initiation and progression have been conducted over the last two decades. Despite improved treatment regimens and significant progress in iden - tifying genes on chromosome 21 and the mechanisms by which they drive leukemogenesis, there is still much that is unknown. A focused group of scientists and clinicians with expertise in leukemia and DS met in October 2022 at the Jérôme Lejeune Foundation in Paris, France for the 1st International Symposium on Down Syndrome and Leukemia. This meeting was held to discuss the most recent advances in treatment regimens and the biology underlying the initiation, progression, and relapse of acute lymphoblastic leukemia and acute myeloid leukemia in children with DS. This review provides a summary of what is known in the field, challenges in the management of DS patients with leukemia, and key questions in the field.


Asunto(s)
Síndrome de Down , Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Humanos , Síndrome de Down/complicaciones , Síndrome de Down/genética , Leucemia Mieloide Aguda/epidemiología , Enfermedad Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Francia
16.
J Gastrointest Surg ; 27(4): 666-676, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36627466

RESUMEN

BACKGROUND: Patients (pts) with locally advanced gastric adenocarcinoma (LAGA) often receive neoadjuvant chemotherapy. A minority of patients do not respond to chemotherapy and thus may benefit from upfront surgery. Patient-derived organoids (PDOs) are an in vitro model that may mimic the chemotherapy response of the original tumors. METHODS: PDOs were generated from endoscopic biopsies of LAGAs prior to the initiation of chemotherapy and treated with the two chemotherapy regimens: FLOT and FOLFOX. Cell proliferation was assayed after 3-6 days. Following chemotherapy, pts underwent surgical resection, and percent pathological necrosis was determined. RESULTS: Successful PDOs were obtained from 13 of 24 (54%) LAGAs. Failure to generate PDOs were due to contamination (n = 3, 13%), early senescence (n = 3, 13%), and late senescence (n = 5, 21%). By H&E staining, there were significant similarities in tumor morphology and high concordance in immunohistochemical expression of 6 markers between tumors and derived PDOs. Four of 13 pts with successful PDOs did not undergo chemotherapy and surgery. For the remaining 9 pts, percent necrosis in resected tumors was ≤ 50% in 2 pts. The corresponding PDOs from these 2 pts were clearly chemoresistant outliers. The Pearson correlation coefficient between chemosensitivity of PDOs to FOLFOX (n = 2) or FLOT (n = 7) and percent tumor necrosis in resected tumors was 0.87 (p = 0.003). CONCLUSIONS: PDOs from pts with LAGAs in many respects mimic the original tumors from which they are derived and may be used to predict resistance to neoadjuvant chemotherapy. SYNOPSIS: Patient-derived organoids (PDOs) can serve as personalized in vitro models of patient tumors. In this study, PDOs from locally advanced gastric cancers were able to reliably predict resistance to neoadjuvant chemotherapy.


Asunto(s)
Adenocarcinoma , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/cirugía , Neoplasias Gástricas/patología , Terapia Neoadyuvante , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/cirugía , Adenocarcinoma/metabolismo , Organoides/metabolismo , Organoides/patología , Necrosis
17.
Cancers (Basel) ; 14(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36497422

RESUMEN

Gastric adenocarcinoma is by far the most common form of gastric cancer (GC) and is a highly lethal form of cancer arising from the gastric epithelium. GC is an important area of focus of the medical community, given its often late-stage of diagnosis and associated high mortality rate. While surgery and chemotherapy remain the primary treatments, attention has been drawn to the use of immunologic therapies, which have shown promise in the treatment of other malignancies. The role for immune-based therapies has become clearer as we obtain a greater understanding of the role of the immune system in gastric cancer formation and growth. A variety treatment to augment the immune system are under evaluation in clinical trials, and these include immune checkpoint inhibitors, antibody-drug conjugates, and immune cell-based therapies. Here, we review the immune landscape and immune-based therapies for GC.

18.
J Surg Oncol ; 126(8): 1413-1422, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36063148

RESUMEN

BACKGROUND: Germline mutation of CDH1 is rare and leads to hereditary diffuse gastric cancer (DGC). METHODS: Patients (pts) with CDH1 mutation who underwent multidisciplinary counseling followed by open prophylactic total gastrectomy (PTG) by a single surgeon were reviewed. RESULTS: Fifty-four pts with a median age of 41 years (16-70 years) underwent PTG between 2006 and 2021. Median operative time was 161 min, and median hospital stay was 7 days (range 6-12). There were 5 complications (9.2%) within 30 days, and two complications (pulmonary embolism and pancreatitis) required readmission. There were no anastomotic leaks. The pathologic analysis of the first 10 pts included the entire gastric mucosa, revealing a median of 15 foci of DGC (range 5-136). The subsequent 44 pts with more limited analysis had a median of 2 foci (range 0-5), and two pts (3.7%) had no foci identified. Median maximum weight loss was 19%. In long-term follow-up (median 4.6 years) of 20 pts, median global QOL was 2.0 (very good), the majority had persistent difficulty with certain foods or liquids, and all stated they would again elect PTG over surveillance endoscopy. CONCLUSIONS: PTG can be performed safely at high-volume referral centers with very good QOL but nutritional sequelae persist.


Asunto(s)
Mutación de Línea Germinal , Neoplasias Gástricas , Adulto , Humanos , Antígenos CD , Cadherinas/genética , Gastrectomía/efectos adversos , Predisposición Genética a la Enfermedad , Células Germinativas/patología , Mutación , Calidad de Vida , Neoplasias Gástricas/genética , Neoplasias Gástricas/cirugía , Neoplasias Gástricas/patología , Adolescente , Adulto Joven , Persona de Mediana Edad , Anciano
19.
Nat Cell Biol ; 24(6): 940-953, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35654839

RESUMEN

Bidirectional signalling between the tumour and stroma shapes tumour aggressiveness and metastasis. ATF4 is a major effector of the Integrated Stress Response, a homeostatic mechanism that couples cell growth and survival to bioenergetic demands. Using conditional knockout ATF4 mice, we show that global, or fibroblast-specific loss of host ATF4, results in deficient vascularization and a pronounced growth delay of syngeneic melanoma and pancreatic tumours. Single-cell transcriptomics of tumours grown in Atf4Δ/Δ mice uncovered a reduction in activation markers in perivascular cancer-associated fibroblasts (CAFs). Atf4Δ/Δ fibroblasts displayed significant defects in collagen biosynthesis and deposition and a reduced ability to support angiogenesis. Mechanistically, ATF4 regulates the expression of the Col1a1 gene and levels of glycine and proline, the major amino acids of collagen. Analyses of human melanoma and pancreatic tumours revealed a strong correlation between ATF4 and collagen levels. Our findings establish stromal ATF4 as a key driver of CAF functionality, malignant progression and metastasis.


Asunto(s)
Fibroblastos Asociados al Cáncer , Melanoma , Neoplasias Pancreáticas , Animales , Fibroblastos Asociados al Cáncer/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica , Melanoma/genética , Ratones , Ratones Noqueados , Neovascularización Patológica/metabolismo , Neoplasias Pancreáticas/patología
20.
Biol Open ; 11(2)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34994382

RESUMEN

Fibroblasts are quiescent and tumor suppressive in nature but become activated in wound healing and cancer. The response of fibroblasts to cellular stress has not been extensively investigated, however the p53 tumor suppressor has been shown to be activated in fibroblasts during nutrient deprivation. Since the p19 Alternative reading frame (p19Arf) tumor suppressor is a key regulator of p53 activation during oncogenic stress, we investigated the role of p19Arf in fibroblasts during nutrient deprivation. Here, we show that prolonged leucine deprivation results in increased expression and nuclear localization of p19Arf, triggering apoptosis in primary murine adult lung fibroblasts (ALFs). In contrast, the absence of p19Arf during long-term leucine deprivation resulted in increased ALF proliferation, migration and survival through upregulation of the Integrated Stress Response pathway and increased autophagic flux. Our data implicates a new role for p19Arf in response to nutrient deprivation. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteína p14ARF Supresora de Tumor , Proteína p53 Supresora de Tumor , Animales , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Fibroblastos/metabolismo , Humanos , Leucina/metabolismo , Ratones , Proteína p14ARF Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...