Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(22): 9714-9722, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38780409

RESUMEN

Gold nanoparticles (Au-NPs) are used as catalysts for a diverse range of industrial applications. Currently, Au-NPs are synthesized chemically, but studies have shown that plants fed Au deposit, this element naturally as NPs within their tissues. The resulting plant material can be used to make biomass-derived catalysts. In vitro studies have shown that the addition of specific, short (∼10 amino acid) peptide/s to solutions can be used to control the NP size and shape, factors that can be used to optimize catalysts for different processes. Introducing these peptides into the model plant species, Arabidopsis thaliana (Arabidopsis), allows us to regulate the diameter of nanoparticles within the plant itself, consequently influencing the catalytic performance in the resulting pyrolyzed biomass. Furthermore, we show that overexpressing the copper and gold COPPER TRANSPORTER 2 (COPT2) in Arabidopsis increases the uptake of these metals. Adding value to the Au-rich biomass offers the potential to make plant-based remediation and stabilization of mine wastes financially feasible. Thus, this study represents a significant step toward engineering plants for the sustainable recovery of finite and valuable elements from our environment.


Asunto(s)
Arabidopsis , Oro , Nanopartículas del Metal , Oro/química , Nanopartículas del Metal/química , Arabidopsis/metabolismo , Catálisis , Biomasa , Tamaño de la Partícula , Cobre/química
2.
Int J Phytoremediation ; 26(9): 1379-1382, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38437154

RESUMEN

Toxic metals and metalloids, especially from anthropogenic sources, now pollute substantial areas of our planet. Phytoextraction is a proven technology with the potential to reduce metal/metalloid pollution, and where financially viable, recover valuable metals ('phytomining'). Toward these aims, there has been a surge of publications over the last two decades. While important progress is being made, ongoing propagation of poor practice, and the resultant drain from funding sources, is hindering this promising research area. This includes mis-ascribing hyperaccumulator species, hydroponics with extremely high dose levels, misuse of Bioconcentration Factors, use of food or biomass crops with low accumulation for phytoextraction, the phenomenon of 'template papers' in which a known hyperaccumulator for element X is dosed with element Y, or a common weed species dosed with any variety of elements to make it 'hyperaccumulate'. Here we highlight these misconceptions with the hope that this will help to: (i) disseminate accurate definitions for in planta metal accumulation; (ii) quash the propagation of poor practice by limiting the inflation of unnecessary publications via the practice of 'template paper' writing; (iii) be used by journal editors and reviewers to validate their reasoning to authors; and (iv) contribute to faster progress in delivering this technology to in-the-field practitioners.


In this note, we highlight some common misconceptions with the hope that this will help to disseminate accurate definitions for hyperaccumulation, promote the appropriate use of hydroponics, and limit template paper writing.


Asunto(s)
Biodegradación Ambiental , Contaminantes del Suelo/metabolismo , Terminología como Asunto , Metales/metabolismo , Plantas/metabolismo
3.
Environ Sci Technol ; 57(17): 6922-6933, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37071813

RESUMEN

Rare earth elements (REEs) are critical for numerous modern technologies, and demand is increasing globally; however, production steps are resource-intensive and environmentally damaging. Some plant species are able to hyperaccumulate REEs, and understanding the biology behind this phenomenon could play a pivotal role in developing more environmentally friendly REE recovery technologies. Here, we identified a REE transporter NRAMP REE Transporter 1 (NREET1) from the REE hyperaccumulator fern Dicranopteris linearis. Although NREET1 belongs to the natural resistance-associated macrophage protein (NRAMP) family, it shares a low similarity with other NRAMP members. When expressed in yeast, NREET1 exhibited REE transport capacity, but it could not transport divalent metals, such as zinc, nickel, manganese, or iron. NREET1 is mainly expressed in D. linearis roots and predominantly localized in the plasma membrane. Expression studies in Arabidopsis thaliana revealed that NREET1 functions as a transporter mediating REE uptake and transfer from root cell walls into the cytoplasm. Moreover, NREET1 has a higher affinity for transporting light REEs compared to heavy REEs, which is consistent to the preferential enrichment of light REEs in field-grown D. linearis. We therefore conclude that NREET1 may play an important role in the uptake and consequently hyperaccumulation of REEs in D. linearis. These findings lay the foundation for the use of synthetic biology techniques to design and produce sustainable, plant-based REE recovery systems.


Asunto(s)
Helechos , Proteínas de Transporte de Membrana , Metales de Tierras Raras , Membrana Celular , Helechos/metabolismo , Zinc/metabolismo
5.
Nat Biotechnol ; 39(10): 1216-1219, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33941930

RESUMEN

The explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a major component of munitions, is used extensively on military training ranges. As a result, widespread RDX pollution in groundwater and aquifers in the United States is now well documented. RDX is toxic, but its removal from training ranges is logistically challenging, lacking cost-effective and sustainable solutions. Previously, we have shown that thale cress (Arabidopsis thaliana) engineered to express two genes, xplA and xplB, encoding RDX-degrading enzymes from the soil bacterium Rhodococcus rhodochrous 11Y can break down this xenobiotic in laboratory studies. Here, we report the results of a 3-year field trial of XplA/XplB-expressing switchgrass (Panicum virgatum) conducted on three locations in a military site. Our data suggest that XplA/XplB switchgrass has in situ efficacy, with potential utility for detoxifying RDX on live-fire training ranges, munitions dumps and minefields.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sustancias Explosivas/metabolismo , Panicum/metabolismo , Contaminantes del Suelo/metabolismo , Proteínas Bacterianas/genética , Biodegradación Ambiental , Panicum/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Rhodococcus/genética , Triazinas/metabolismo , Estados Unidos
6.
Curr Opin Chem Biol ; 58: 86-95, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32805454

RESUMEN

The World Health Organization reported that "an estimated 12.6 million people died as a result of living or working in an unhealthy environment in 2012, nearly 1 in 4 of total global deaths". Air, water and soil pollution were the significant risk factors, and there is an urgent need for effective remediation strategies. But tackling this problem is not easy; there are many different types of pollutants, often widely dispersed, difficult to locate and identify, and in many cases cost-effective clean-up techniques are lacking. Biology offers enormous potential as a tool to develop microbial and plant-based solutions to remediate and restore our environment. Advances in synthetic biology are unlocking this potential enabling the design of tailor-made organisms for bioremediation. In this article, we showcase examples of xenobiotic clean-up to illustrate current achievements and discuss the limitations to advancing this promising technology to make real-world improvements in the remediation of global pollution.


Asunto(s)
Biodegradación Ambiental , Biología Sintética , Contaminantes Ambientales/aislamiento & purificación , Contaminantes Ambientales/metabolismo
7.
Biotechnol Lett ; 41(10): 1155-1162, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31392514

RESUMEN

OBJECTIVES: To survey a library of over-expressed nitroreductases to identify those most active with 2,4- and 2,6-dinitrotoluene substrates, as promising candidates for phytoremediation of soils and groundwater contaminated with poly-nitro toluene pollutants. RESULTS: To indirectly monitor dinitrotoluene reduction we implemented a nitroblue tetrazolium dye screen to compare relative rates of NADPH consumption for 58 nitroreductase candidates, over-expressed in a nitroreductase-deleted strain of Escherichia coli. Although the screen only provides activity data at a single substrate concentration, by altering the substrate concentration and duration of incubation we showed we could first distinguish between more-active and less-active enzymes and then discriminate between the relative rates of reduction exhibited by the most active nitroreductases in the collection. We observed that members of the NfsA and NfsB nitroreductase families were the most active with 2,4-dinitrotoluene, but that only members of the NfsB family reduced 2,6-dinitrotoluene effectively. Two NfsB family members, YfkO from Bacillus subtilis and NfsB from Vibrio vulnificus, appeared especially effective with these substrates. Purification of both enzymes as His6-tagged recombinant proteins enabled in vitro determination of Michaelis-Menten kinetic parameters with each dinitrotoluene substrate. CONCLUSIONS: Vibrio vulnificus NfsB is a particularly promising candidate for bioremediation applications, being ca. fivefold more catalytically efficient with 2,4-dinitrotoluene and over 26-fold more active with 2,6-dinitrotoluene than the benchmark E. coli nitroreductases NfsA and NfsB.


Asunto(s)
Bacillus subtilis/enzimología , Biodegradación Ambiental , Dinitrobencenos/metabolismo , Contaminantes Ambientales/metabolismo , Nitrorreductasas/análisis , Vibrio vulnificus/enzimología , Cinética , Nitrorreductasas/aislamiento & purificación , Oxidación-Reducción
8.
Int J Phytoremediation ; 21(11): 1051-1064, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31056922

RESUMEN

While the immediate effect of explosives in armed conflicts is frequently in the public eye, until recently, the insidious, longer-term corollaries of these toxic compounds in the environment have gone largely unnoticed. Now, increased public awareness and concern are factors behind calls for more effective remediation solutions to these global pollutants. Scientists have been working on bioremediation projects in this area for several decades, characterizing genes, biochemical detoxification pathways, and field-applicable plant species. This review covers the progress made in understanding the fundamental biochemistry behind the detoxification of explosives, including new shock-insensitive explosive compounds; how field-relevant plant species have been characterized and genetically engineered; and the major roles that endophytic and rhizospheric microorganisms play in the detoxification of organic pollutants such as explosives.


Asunto(s)
Contaminantes Ambientales , Sustancias Explosivas , Contaminantes del Suelo , Biodegradación Ambiental , Plantas
9.
J Chem Educ ; 96(12): 2959-2967, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-32051645

RESUMEN

Increasing demand for chemicals worldwide, depleting resources, consumer pressure, stricter legislation, and the rising cost of waste disposal are placing increasing pressure on chemical and related industries. For any organization to survive in the current arena of growing climate change laws and regulations, and increasing public influence, the issue of sustainability must be fundamental to the way it operates. A sustainable manufacturing approach will enable economic growth to be combined with environmental and social sustainability and will be realized via collaboration between a multidisciplinary community including chemists, biologists, engineers, environmental scientists, economists, experts in management, and policy makers. Hence, employees with new skills, knowledge, and experience are essential. To realize this approach, the design and development of a series of workshops encompassing systems thinking are presented here. After close consultation with industry, an annual program of interactive workshops has been designed for graduate students to go beyond examining the "greening" of chemical reactions, processes, and products, and instead embed a systems thinking approach to learning. The workshops provide a valuable insight into the issues surrounding sustainable manufacturing covering change management, commercialization, environmental impact, circular economy, legislation, and bioresources incorporating the conversion of waste into valuable products. The multidisciplinary course content incorporates industrial case studies, providing access to real business issues, and is delivered by experts from academic departments across campus and industry.

10.
Planta ; 249(4): 1007-1015, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30488285

RESUMEN

MAIN CONCLUSION: Transgenic western wheatgrass degrades the explosive RDX and detoxifies TNT. Contamination, from the explosives, hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX), and 2, 4, 6-trinitrotoluene (TNT), especially on live-fire training ranges, threatens environmental and human health. Phytoremediation is an approach that could be used to clean-up explosive pollution, but it is hindered by inherently low in planta RDX degradation rates, and the high phytotoxicity of TNT. The bacterial genes, xplA and xplB, confer the ability to degrade RDX in plants, and a bacterial nitroreductase gene nfsI enhances the capacity of plants to withstand and detoxify TNT. While the previous studies have used model plant species to demonstrate the efficacy of this technology, trials using plant species able to thrive in the challenging environments found on military training ranges are now urgently needed. Perennial western wheatgrass (Pascopyrum smithii) is a United States native species that is broadly distributed across North America, well-suited for phytoremediation, and used by the US military to re-vegetate military ranges. Here, we present the first report of the genetic transformation of western wheatgrass. Plant lines transformed with xplA, xplB, and nfsI removed significantly more RDX from hydroponic solutions and retained much lower, or undetectable, levels of RDX in their leaf tissues when compared to wild-type plants. Furthermore, these plants were also more resistant to TNT toxicity, and detoxified more TNT than wild-type plants. This is the first study to engineer a field-applicable grass species capable of both RDX degradation and TNT detoxification. Together, these findings present a promising biotechnological approach to sustainably contain, remove RDX and TNT from training range soil and prevent groundwater contamination.


Asunto(s)
Sustancias Explosivas/metabolismo , Poaceae/genética , Contaminantes del Suelo/metabolismo , Triazinas/metabolismo , Trinitrotolueno/metabolismo , Biodegradación Ambiental , Ingeniería Genética/métodos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Poaceae/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
Front Plant Sci ; 9: 1846, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30631331

RESUMEN

The explosive xenobiotic 2,4,6-trinitrotoluene (TNT) is a major worldwide environmental pollutant and its persistence in the environment presents health and environmental concerns. The chemical structure of TNT dictates that biological detoxification pathways follow predominantly reductive transformation of the nitro groups, and as a result, TNT is notoriously recalcitrant to mineralization in the environment. Plant-based technologies to remediate this toxic pollutant rely on a solid understanding of the biochemical detoxification pathways involved. Toward this, two Arabidopsis Tau class glutathione transferases, GSTU24 and GSTU25, have been identified that catalyze the formation of three TNT-glutathionylated conjugates. These two GSTs share 79% identity yet only GSTU25 catalyzes the substitution of a nitro group for sulfur to form 2-glutathionyl-4,6-dinitrotoluene. The production of this compound is of interest because substitution of a nitro group could lead to destabilization of the aromatic ring, enabling subsequent biodegradation. To identify target amino acids within GSTU25 that might be involved in the formation of 2-glutathionyl-4,6-dinitrotoluene, the structure for GSTU25 was determined, in complex with oxidized glutathione, and used to inform site-directed mutagenesis studies. Replacement of five amino acids in GSTU24 established a conjugate profile and activity similar to that found in GSTU25. These findings contribute to the development of plant-based remediation strategies for the detoxification of TNT in the environment.

12.
FEMS Microbiol Lett ; 364(14)2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28854671

RESUMEN

The xenobiotic hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a toxic explosive and environmental pollutant. This study examines three bacterial species that degrade RDX, using it as a sole source of nitrogen for growth. Although isolated from diverse geographical locations, the species contain near identical copies of genes encoding the RDX-metabolising cytochrome P450, XplA and accompanying reductase, XplB. Sequence analysis indicates a single evolutionary origin for xplA and xplB as part of a genomic island, which has been distributed around the world via horizontal gene transfer. Despite the fact that xplA and xplB are highly conserved between species, Gordonia sp. KTR9 and Microbacterium sp. MA1 degrade RDX more slowly than Rhodococcus rhodochrous 11Y. Both Gordonia sp. KTR9 and Microbacterium sp. MA1 were found to contain single base-pair mutations in xplB which, following expression and purification, were found to encode inactive XplB protein. Additionally, the Gordonia sp. KTR9 XplB was fused to glutamine synthetase, which would be likely to sterically inhibit XplB activity. Although the glutamine synthetase is fused to XplB and truncated by 71 residues, it was found to be active. Glutamine synthetase has been implicated in the regulation of nitrogen levels; controlling nitrogen availability will be important for effective bioremediation of RDX.


Asunto(s)
Actinomycetales/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sustancias Explosivas/metabolismo , NADH NADPH Oxidorreductasas/genética , Triazinas/metabolismo , Actinomycetales/genética , Biodegradación Ambiental , Sistema Enzimático del Citocromo P-450/metabolismo , ADN Bacteriano/genética , Sustancias Explosivas/química , Transferencia de Gen Horizontal , Glutamato-Amoníaco Ligasa/genética , Bacteria Gordonia/genética , Bacteria Gordonia/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Nitrógeno/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo , Análisis de Secuencia de ADN , Contaminantes del Suelo/metabolismo
13.
Plant Mol Biol ; 95(1-2): 99-109, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28762129

RESUMEN

KEY MESSAGE: Expression of the bacterial nitroreductase gene, nfsI, in tobacco plastids conferred the ability to detoxify TNT. The toxic pollutant 2,4,6-trinitrotoluene (TNT) is recalcitrant to degradation in the environment. Phytoremediation is a potentially low cost remediation technique that could be applied to soil contaminated with TNT; however, progress is hindered by the phytotoxicity of this compound. Previous studies have demonstrated that plants transformed with the bacterial nitroreductase gene, nfsI have increased ability to tolerate and detoxify TNT. It has been proposed that plants engineered to express nfsI could be used to remediate TNT on military ranges, but this could require steps to mitigate transgene flow to wild populations. To address this, we have developed nfsI transplastomic tobacco (Nicotiana tabacum L.) to reduce pollen-borne transgene flow. Here we have shown that when grown on solid or liquid media, the transplastomic tobacco expressing nfsI were significantly more tolerant to TNT, produced increased biomass and removed more TNT from the media than untransformed plants. Additionally, transplastomic plants expressing nfsI regenerated with high efficiency when grown on medium containing TNT, suggesting that nfsI and TNT could together be used to provide a selectable screen for plastid transformation.


Asunto(s)
Bacterias/enzimología , Nicotiana/genética , Nitrorreductasas/metabolismo , Plastidios/genética , Trinitrotolueno/metabolismo , Biodegradación Ambiental/efectos de los fármacos , Vectores Genéticos/metabolismo , Plantas Modificadas Genéticamente , Regeneración/efectos de los fármacos , Nicotiana/efectos de los fármacos , Nicotiana/crecimiento & desarrollo , Transformación Genética , Trinitrotolueno/toxicidad
14.
Environ Sci Technol ; 51(5): 2992-3000, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28191957

RESUMEN

Although a promising technique, phytoextraction has yet to see significant commercialization. Major limitations include metal uptake rates and subsequent processing costs. However, it has been shown that liquid-culture-grown Arabidopsis can take up and store palladium as nanoparticles. The processed plant biomass has catalytic activity comparable to that of commercially available catalysts, creating a product of higher value than extracted bulk metal. We demonstrate that the minimum level of palladium in Arabidopsis dried tissues for catalytic activity comparable to commercially available 3% palladium-on-carbon catalysts was achieved from dried plant biomass containing between 12 and 18 g·kg-1 Pd. To advance this technology, species suitable for in-the-field application: mustard, miscanthus, and 16 willow species and cultivars, were tested. These species were able to grow, and take up, palladium from both synthetic and mine-sourced tailings. Although levels of palladium accumulation in field-suitable species are below that required for commercially available 3% palladium-on-carbon catalysts, this study both sets the target, and is a step toward, the development of field-suitable species that concentrate catalytically active levels of palladium. Life cycle assessment on the phytomining approaches described here indicates that the use of plants to accumulate palladium for industrial applications has the potential to decrease the overall environmental impacts associated with extracting palladium using present-day mining processes.


Asunto(s)
Minería , Paladio , Arabidopsis , Catálisis , Planta de la Mostaza , Contaminantes del Suelo
15.
FEBS Open Bio ; 7(2): 122-132, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28174680

RESUMEN

Glutathione transferases (GSTs) are involved in many processes in plant biochemistry, with their best characterised role being the detoxification of xenobiotics through their conjugation with glutathione. GSTs have also been implicated in noncatalytic roles, including the binding and transport of small heterocyclic ligands such as indole hormones, phytoalexins and flavonoids. Although evidence for ligand binding and transport has been obtained using gene deletions and ligand binding studies on purified GSTs, there has been no structural evidence for the binding of relevant ligands in noncatalytic sites. Here we provide evidence of noncatalytic ligand-binding sites in the phi class GST from the model plant Arabidopsis thaliana, AtGSTF2, revealed by X-ray crystallography. Complexes of the AtGSTF2 dimer were obtained with indole-3-aldehyde, camalexin, the flavonoid quercetrin and its non-rhamnosylated analogue quercetin, at resolutions of 2.00, 2.77, 2.25 and 2.38 Å respectively. Two symmetry-equivalent-binding sites (L1) were identified at the periphery of the dimer, and one more (L2) at the dimer interface. In the complexes, indole-3-aldehyde and quercetrin were found at both L1 and L2 sites, but camalexin was found only at the L1 sites and quercetin only at the L2 site. Ligand binding at each site appeared to be largely determined through hydrophobic interactions. The crystallographic studies support previous conclusions made on ligand binding in noncatalytic sites by AtGSTF2 based on isothermal calorimetry experiments (Dixon et al. (2011) Biochem J438, 63-70) and suggest a mode of ligand binding in GSTs commensurate with a possible role in ligand transport.

16.
New Phytol ; 214(1): 294-303, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27924627

RESUMEN

The explosive 2,4,6-trinitrotoluene (TNT) is a significant, global environmental pollutant that is both toxic and recalcitrant to degradation. Given the sheer scale and inaccessible nature of contaminated areas, phytoremediation may be a viable clean-up approach. Here, we have characterized a Drosophila melanogaster glutathione transferase (DmGSTE6) which has activity towards TNT. Recombinantly expressed, purified DmGSTE6 produces predominantly 2-glutathionyl-4,6-dinitrotoluene, and has a 2.5-fold higher Maximal Velocity (Vmax ), and five-fold lower Michaelis Constant (Km ) than previously characterized TNT-active Arabidopsis thaliana (Arabidopsis) GSTs. Expression of DmGSTE6 in Arabidopsis conferred enhanced resistance to TNT, and increased the ability to remove TNT from contaminated soil relative to wild-type plants. Arabidopsis lines overexpressing TNT-active GSTs AtGST-U24 and AtGST-U25 were compromised in biomass production when grown in the absence of TNT. This yield drag was not observed in the DmGSTE6-expressing Arabidopsis lines. We hypothesize that increased levels of endogenous TNT-active GSTs catalyse excessive glutathionylation of endogenous substrates, depleting glutathione pools, an activity that DmGST may lack. In conclusion, DmGSTE6 has activity towards TNT, producing a compound with potential for further biodegradation. Selecting or manipulating plants to confer DmGSTE6-like activity could contribute towards development of phytoremediation strategies to clean up TNT from polluted military sites.


Asunto(s)
Arabidopsis/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Contaminantes Ambientales/toxicidad , Sustancias Explosivas/toxicidad , Glutatión Transferasa/genética , Trinitrotolueno/toxicidad , Animales , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Drosophila/metabolismo , Contaminación Ambiental , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Inactivación Metabólica/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Trinitrotolueno/química
17.
Plant Biotechnol J ; 15(5): 624-633, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27862819

RESUMEN

The deposition of toxic munitions compounds, such as hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX), on soils around targets in live-fire training ranges is an important source of groundwater contamination. Plants take up RDX but do not significantly degrade it. Reported here is the transformation of two perennial grass species, switchgrass (Panicum virgatum) and creeping bentgrass (Agrostis stolonifera), with the genes for degradation of RDX. These species possess a number of agronomic traits making them well equipped for the uptake and removal of RDX from root zone leachates. Transformation vectors were constructed with xplA and xplB, which confer the ability to degrade RDX, and nfsI, which encodes a nitroreductase for the detoxification of the co-contaminating explosive 2, 4, 6-trinitrotoluene (TNT). The vectors were transformed into the grass species using Agrobacterium tumefaciens infection. All transformed grass lines showing high transgene expression levels removed significantly more RDX from hydroponic solutions and retained significantly less RDX in their leaf tissues than wild-type plants. Soil columns planted with the best-performing switchgrass line were able to prevent leaching of RDX through a 0.5-m root zone. These plants represent a promising plant biotechnology to sustainably remove RDX from training range soil, thus preventing contamination of groundwater.


Asunto(s)
Agrostis/genética , Biodegradación Ambiental , Panicum/genética , Plantas Modificadas Genéticamente , Triazinas/metabolismo , Agrostis/efectos de los fármacos , Agrostis/metabolismo , Vectores Genéticos , Instalaciones Militares , NADH NADPH Oxidorreductasas/genética , Nitrorreductasas/genética , Panicum/efectos de los fármacos , Panicum/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/farmacocinética , Triazinas/farmacocinética , Trinitrotolueno/farmacología
18.
Science ; 349(6252): 1072-5, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26339024

RESUMEN

The explosive 2,4,6-trinitrotoluene (TNT) is a highly toxic and persistent environmental pollutant. Due to the scale of affected areas, one of the most cost-effective and environmentally friendly means of removing explosives pollution could be the use of plants. However, mechanisms of TNT phytotoxicity have been elusive. Here, we reveal that phytotoxicity is caused by reduction of TNT in the mitochondria, forming a nitro radical that reacts with atmospheric oxygen, generating reactive superoxide. The reaction is catalyzed by monodehydroascorbate reductase 6 (MDHAR6), with Arabidopsis deficient in MDHAR6 displaying enhanced TNT tolerance. This discovery will contribute toward the remediation of contaminated sites. Moreover, in an environment of increasing herbicide resistance, with a shortage in new herbicide classes, our findings reveal MDHAR6 as a valuable plant-specific target.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Restauración y Remediación Ambiental , Sustancias Explosivas/toxicidad , NADH NADPH Oxidorreductasas/metabolismo , Trinitrotolueno/toxicidad , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/metabolismo , Proteínas de Arabidopsis/genética , Sustancias Explosivas/metabolismo , Mutación del Sistema de Lectura , Resistencia a los Herbicidas/genética , Herbicidas/química , Herbicidas/metabolismo , Herbicidas/farmacología , Mitocondrias/enzimología , NADH NADPH Oxidorreductasas/genética , Plastidios/enzimología , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología , Superóxidos/metabolismo , Trinitrotolueno/química , Trinitrotolueno/metabolismo
19.
J Exp Bot ; 66(21): 6519-33, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26283045

RESUMEN

It has been 14 years since the international community came together to legislate the Stockholm Convention on Persistent Organic Pollutants (POPs), restricting the production and use of specific chemicals that were found to be environmentally stable, often bioaccumulating, with long-term toxic effects. Efforts are continuing to remove these pollutants from the environment. While incineration and chemical treatment can be successful, these methods require the removal of tonnes of soil, at high cost, and are damaging to soil structure and microbial communities. The engineering of plants for in situ POP remediation has had highly promising results, and could be a more environmentally-friendly alternative. This review discusses the characterization of POP-degrading bacterial pathways, and how the genes responsible have been harnessed using genetic modification (GM) to introduce these same abilities into plants. Recent advances in multi-gene cloning, genome editing technologies and expression in monocot species are accelerating progress with remediation-applicable species. Examples include plants developed to degrade 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), trichloroethylene (TCE), and polychlorinated biphenyls (PCBs). However, the costs and timescales needed to gain regulatory approval, along with continued public opposition, are considerable. The benefits and challenges in this rapidly developing and promising field are discussed.


Asunto(s)
Biodegradación Ambiental , Genes Bacterianos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Contaminantes del Suelo/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
20.
Plant Signal Behav ; 10(1): e977714, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25654165

RESUMEN

Our recent study highlights the role of 2 glutathione transferases (GSTs) in the detoxification of the environmental pollutant, 2,4,6-trinitrotoluene (TNT) in Arabidopsis thaliana. TNT is toxic and highly resistant to biodegradation in the environment, raising both health and environmental concerns. Two GSTs, GST-U24 and GST-U25, are upregulated in response to TNT treatment, and expressed predominantly in the root tissues; the site of TNT location following uptake. Plants overexpressing GST-U24 and GST-U25 exhibited significantly enhanced ability to withstand and detoxify TNT, and remove TNT from contaminated soil. Analysis of the catalytic activities of these 2 enzymes revealed that they form 3 TNT-glutathionyl products. Of particular interest is 2-glutathionyl-4,6-dinitrotoluene as this represents a potentially favorable step toward subsequent degradation and mineralization of TNT. We demonstrate how GSTs fit into what is already known about pathways for TNT detoxification, and discuss the short and longer-term fate of TNT conjugates in planta.


Asunto(s)
Arabidopsis/metabolismo , Contaminantes Ambientales/química , Contaminantes Ambientales/metabolismo , Glutatión Transferasa/metabolismo , Trinitrotolueno/química , Trinitrotolueno/metabolismo , Biodegradación Ambiental , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/fisiología , Glutatión Transferasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...