Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Med ; 13(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38337500

RESUMEN

BACKGROUND: The aim of this study was to compare the clinical effectiveness of robot-assisted therapy with that of conventional occupational therapy according to the onset and severity of stroke. METHODS: In this multicenter randomized controlled trial, stroke patients were randomized (1:1) to receive robot-assisted therapy or conventional occupational therapy. The robot-assisted training group received 30 min of robot-assisted therapy twice and 30 min of conventional occupational therapy daily, while the conventional therapy group received 90 min of occupational therapy. Therapy was conducted 5 days/week for 4 weeks. The primary outcome was the Wolf Motor Function Test (WMFT) score after 4 and 8 weeks of therapy. RESULTS: Overall, 113 and 115 patients received robot-assisted and conventional therapy, respectively. The WMFT score after robot-assisted therapy was not significantly better than that after conventional therapy, but there were significant improvements in the Motricity Index (trunk) and the Fugl-Meyer Assessment. After robot-assisted therapy, wrist strength significantly improved in the subacute or moderate-severity group of stroke patients. CONCLUSIONS: Robot-assisted therapy improved the upper-limb functions and activities of daily living (ADL) performance as much as conventional occupational therapy. In particular, it showed signs of more therapeutic effectiveness in the subacute stage or moderate-severity group.

2.
Ann Rehabil Med ; 46(6): 312-319, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36588446

RESUMEN

OBJECTIVE: To investigate the effects of customized biomechanical foot orthosis (BFO) on kinematic data during gait in patients with hallux valgus (HV) deformities and compare the results with those of a normal control group. METHODS: Ten patients with HV deformities and 10 healthy volunteers were enrolled in this study. HV deformity was diagnosed using biomechanical and radiological assessments by a rehabilitation physician. Patients received the customized BFO manufactured at a commercial orthosis laboratory (Biomechanics, Goyang, South Korea) according to the strictly defined procedure by a single experienced technician. The spatiotemporal and kinematic data acquired by the Vicon 3D motion capture system (Oxford Metrics, Oxford, UK) were compared between the intervention groups (control vs. HV without orthosis) and between the HV groups (with vs. without orthosis). RESULTS: The temporal-spatial and kinematic parameters of the HV group were significantly different from those of the control group. After applying BFO to the HV group, significantly increased ranges of plantar flexion motion and hindfoot inversion were observed. Furthermore, the HV group with BFO showed improved gait cadence, walking speed, and stride length, although the results were not statistically significant. CONCLUSION: Our results suggest that it is imperative to understand the pathophysiology of HV, and the application of customized BFO can be useful for improving kinematics in HV deformities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...