Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small ; 20(26): e2309429, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38553811

RESUMEN

Thermally driven fiber actuators are emerging as promising tools for a range of robotic applications, encompassing soft and wearable robots, muscle function restoration, assistive systems, and physical augmentation. Yet, to realize their full potential in practical applications, several challenges, such as a high operational temperature, incorporation of intrinsic self-sensing capabilities for closed-loop feedback control, and reliance on bulky, intricate actuation systems, must be addressed. Here, an Ag nanoparticles-based twisted and coiled fiber actuator that achieves a high contractile actuation of ≈36% is reported at a considerably low operational temperature of ≈83 °C based on a synergistic effect of constituent fiber elements with low glass transition temperatures. The fiber actuator can monitor its contractile actuation in real-time based on the piezoresistive properties inherent to its Ag-based conductive region, demonstrating its proprioceptive sensing capability. By exploiting this capability, the proprioceptive fiber actuator adeptly maintains its intended contractile behavior, even when faced with unplanned external disturbances. To demonstrate the capabilities of the fiber actuator, this study integrates it into a closed-loop feedback-controlled bionic arm as an artificial muscle, offering fresh perspectives on the future development of intelligent wearable devices and soft robotic systems.

2.
Adv Sci (Weinh) ; 10(15): e2206186, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36995044

RESUMEN

Fiber-based implantable electronics are one of promising candidates for in vivo biomedical applications thanks to their unique structural advantages. However, development of fiber-based implantable electronic devices with biodegradable capability remains a challenge due to the lack of biodegradable fiber electrodes with high electrical and mechanical properties. Here, a biocompatible and biodegradable fiber electrode which simultaneously exhibits high electrical conductivity and mechanical robustness is presented. The fiber electrode is fabricated through a facile approach that incorporates a large amount of Mo microparticles into outermost volume of a biodegradable polycaprolactone (PCL) fiber scaffold in a concentrated manner. The biodegradable fiber electrode simultaneously exhibits a remarkable electrical performance (≈43.5 Ω cm-1 ), mechanical robustness, bending stability, and durability for more than 4000 bending cycles based on the Mo/PCL conductive layer and intact PCL core in the fiber electrode. The electrical behavior of the biodegradable fiber electrode under the bending deformation is analyzed by an analytical prediction and a numerical simulation. In addition, the biocompatible properties and degradation behavior of the fiber electrode are systematically investigated. The potential of biodegradable fiber electrode is demonstrated in various applications such as an interconnect, a suturable temperature sensor, and an in vivo electrical stimulator.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA